2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ag NPs incorporated self-healable thermoresponsive hydrogel using precise structural “Interlocking” complex of polyelectrolyte BCPs: A potential new wound healing material

      , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

          A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation in wound repair: molecular and cellular mechanisms.

            In post-natal life the inflammatory response is an inevitable consequence of tissue injury. Experimental studies established the dogma that inflammation is essential to the establishment of cutaneous homeostasis following injury, and in recent years information about specific subsets of inflammatory cell lineages and the cytokine network orchestrating inflammation associated with tissue repair has increased. Recently, this dogma has been challenged, and reports have raised questions on the validity of the essential prerequisite of inflammation for efficient tissue repair. Indeed, in experimental models of repair, inflammation has been shown to delay healing and to result in increased scarring. Furthermore, chronic inflammation, a hallmark of the non-healing wound, predisposes tissue to cancer development. Thus, a more detailed understanding in mechanisms controlling the inflammatory response during repair and how inflammation directs the outcome of the healing process will serve as a significant milestone in the therapy of pathological tissue repair. In this paper, we review cellular and molecular mechanisms controlling inflammation in cutaneous tissue repair and provide a rationale for targeting the inflammatory phase in order to modulate the outcome of the healing response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

              Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                February 2021
                February 2021
                : 405
                : 126436
                Article
                10.1016/j.cej.2020.126436
                e53c70a7-8d3b-41ca-942a-af1b893fa4d4
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article