Search for authorsSearch for similar articles
90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

          Abstract

          Gram-negative bacterial infections can often cause inflammation and pain. Meseguer et al. show that the inflammation and pain result from the direct activation of nociceptor TRPA1 channels by lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Impaired nociception and pain sensation in mice lacking the capsaicin receptor.

          The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

            TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.

              Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                20 January 2014
                : 5
                : 3125
                Affiliations
                [1 ]Instituto de Neurociencias de Alicante, Universidad Miguel Hernández y CSIC , Alicante E-03550, Spain
                [2 ]Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine and TRP Research Platform Leuven (TRPLe) , Leuven B-3000, Belgium
                [3 ]Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC , Valladolid E-47003, Spain
                [4 ]Vicepresidencia de Investigaciones. Instituto Finlay , 11600 La Habana, Cuba
                [5 ]Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg , Erlangen D-91054, Germany
                [6 ]Department of Physiology, CIMUS, University of Santiago de Compostela , Santiago de Compostela E-15782, Spain
                [7 ]These authors contributed equally to this work
                Author notes
                Article
                ncomms4125
                10.1038/ncomms4125
                3905718
                24445575
                e7c588ff-08c7-47e4-86f3-f9ab904571b9
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 04 November 2013
                : 16 December 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article