61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adsorption of ammonia at GaN(0001) surface in the mixed ammonia/hydrogen ambient - a summary of ab initio data

      Preprint
      ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adsorption of ammonia at NH3/NH2/H covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH3/NH2/H covered GaN(0001) surface was divided into zones differently pinned Fermi level: at Ga broken bond state for dominantly bare surface (region I), at VBM for NH2 and H covered (region II), and at CBM for NH3 covered surface (region III). The extensive ab intio calculations show validity of electron counting rule (ECR) for all mixed coverage, for bordering these three regions. The adsorption was analyzed using newly identified dependence of the adsorption energy on the charge transfer at the surface. For region I and II ammonia adsorb dissociatively, disintegrating into H adatom and HN2 radical for large fraction of vacant sites while for high coverage the ammonia adsorption is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. The molecular adsorption is determined by the energy of covalent bonding to the surface. Ammonia adsorption in region III (Fermi level pinned at CBM) leads to unstable configuration both molecular and dissociative which is explained by the fact that Ga-broken bond sites are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating transfer of the electrons from Ga-broken bond state to Fermi level, energetically costly process. Adsorption of ammonia at H-covered site leads to creation of NH2 radical at the surface and escape of H2 molecule. The process energy is close to 0.12 eV, thus not large, but the inverse process is not possible due to escape of the hydrogen molecule.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Efficient index handling of multidimensional periodic boundary conditions

              An efficient method is described to handle mesh indexes in multidimensional problems like numerical integration of partial differential equations, lattice model simulations, and determination of atomic neighbor lists. By creating an extended mesh, beyond the periodic unit cell, the stride in memory between equivalent pairs of mesh points is independent of their position within the cell. This allows to contract the mesh indexes of all dimensions into a single index, avoiding modulo and other implicit index operations.
                Bookmark

                Author and article information

                Journal
                2014-05-24
                Article
                10.1063/1.4901922
                1405.6309
                68407812-e198-41f8-b45d-a1554087bfe9

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                AIP Advances - 13 November 2014; 4: 117109-1-24
                37 pages, 14 figures
                cond-mat.mtrl-sci

                Condensed matter
                Condensed matter

                Comments

                Comment on this article