33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combinatorial treatment with polyI:C and anti-IL6 enhances apoptosis and suppresses metastasis of lung cancer cells.

      Oncotarget
      Impact Journals LLC
      JAK2/STAT3 antagonists, anti-IL6 antibody, cytokines and caspase 3/7 apoptosis, lung cancer cells, polyI:C-TLR3 suppression of survival and metastasis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of TLR3 stimulates cancer cell apoptosis and triggers secretion of inflammatory cytokines. PolyI:C, a TLR3 agonist, activates immune cells and regresses metastatic lung cancer in vivo. Although polyI:C reportedly kills lung carcinomas, the mechanism remains elusive. Here, we demonstrated that polyI:C suppressed the proliferation and survival of metastatic (NCI-H358 and NCI-H292) and non-metastatic (A549) lung cancer cells. Notably, A549, NCI-H292 and NCI-H358 which are inducible by polyI:C, expressed low-to-medium level of TLR3 protein, and were susceptible to polyI:C treatment. By contrast, NCI-H1299, which endogenously expresses high level of TLR3 protein, was insensitive to polyI:C. We showed that polyI:C stimulated pro-inflammatory cytokines associated with survival and metastasis in a cell type-specific manner. While A549 and NCI-H292 released high levels of IL6, IL8 and GRO, the NCI-H358 cells endogenously secretes abundant levels of these cytokines, and was not further induced by polyI:C. Thus, NCI-H358 was resistant to the inhibition of cytokine-dependent metastasis. NCI-H1299, which was unresponsive to polyI:C, did not produce any of the pro-inflammatory cytokines. Treatment of A549 with a combination of polyI:C and anti-IL6 antibody significantly decreased IL6 production, and enhanced polyI:C-mediated killing and suppression of oncogenicity and metastasis. While polyI:C stimulated the phosphorylation of STAT3 and JAK2, blockade of these proteins enhanced polyI:C-mediated suppression of survival and metastasis. Taken together, polyI:C alone provoked apoptosis of lung cancer cells that express low-to-medium levels of functional TLR3 protein. The combinatorial treatment with polyI:C and anti-IL6 enhanced polyI:C-mediated anticancer activities through IL6/JAK2/STAT3 signalling, and apoptosis via TLR3-mediated caspase 3/8 pathway.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Toll-like receptors and cancer.

          Toll-like receptors (TLRs) are a family of pattern recognition receptors that are best-known for their role in host defence from infection. Emerging evidence also suggests that TLRs have an important role in maintaining tissue homeostasis by regulating the inflammatory and tissue repair responses to injury. The development of cancer has been associated with microbial infection, injury, inflammation and tissue repair. Here we discuss how the function of TLRs may relate to these processes in the context of carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TLR3: interferon induction by double-stranded RNA including poly(I:C).

            Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA and its synthetic analog polyriboinosinic:polyribocytidylic acid (poly(I:C)) and induces type I interferon (IFN), inflammatory cytokine/chemokine production and dendritic cell (DC) maturation via the adaptor protein TICAM-1 (also called TRIF). TLR3 is expressed both intracellularly and on the cell surface of fibroblasts and epithelial cells, but is localized to the endosomal compartment of myeloid DCs. Several studies in TLR3-deficient mice demonstrate that TLR3 participates in the generation of protective immunity against some viral infections. Involvement of TLR3-TICAM-1 in activation of NK cells and CTLs by myeloid DCs suggests that TLR3 serves as an inducer of cellular immunity sensing viral infection rather than a simple IFN inducer. In this review, we summarize the current knowledge on TLR3 and discuss its possible role in innate and adaptive immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis.

              IFNs are a family of cytokines with pleiotropic biological effects mediated by scores of responsive genes. IFNs were the first human proteins to be effective in cancer therapy and were among the first recombinant DNA products to be used clinically. Both quality and quantity of life has been improved in response to IFNs in various malignancies. Despite its beneficial effects, unraveling the mechanisms of the anti-tumor effects of IFN has proven to be a complex task. IFNs may mediate anti-tumor effects either indirectly by modulating immunomodulatory and anti-angiogenic responses or by directly affecting proliferation or cellular differentiation of tumor cells. Both direct or indirect effects of IFNs result from induction of a subset of genes, called IFN stimulated genes (ISGs). In addition to the ISGs implicated in anti-viral, anti-angiogenic, immunomodulatory and cell cycle inhibitory effects, oligonucleotide microarray studies have identified ISGs with apoptotic functions. These include TNF-alpha related apoptosis inducing ligand (TRAIL/Apo2L), Fas/FasL, XIAP associated factor-1 (XAF-1), caspase-4, caspase-8, dsRNA activated protein kinase (PKR), 2'5'A oligoadenylate synthetase (OAS), death activating protein kinases (DAP kinase), phospholipid scramblase, galectin 9, IFN regulatory factors (IRFs), promyelocytic leukemia gene (PML) and regulators of IFN induced death (RIDs). In vitro IFN-alpha, IFN-beta and IFN-gamma induced apoptosis in multiple cell lines of varied histologies. This review will emphasize possible mechanisms and the role of ISGs involved in mediating apoptotic function of IFNs.
                Bookmark

                Author and article information

                Comments

                Comment on this article