65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria.

      Cell
      Animals, Autophagy, B-Lymphocytes, metabolism, Calcium, Calcium Signaling, Cell Line, Chickens, Gene Knockout Techniques, Inositol 1,4,5-Trisphosphate Receptors, Mitochondria, Oxidative Phosphorylation

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics. Copyright 2010 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          20655468
          2911450
          10.1016/j.cell.2010.06.007

          Chemistry
          Animals,Autophagy,B-Lymphocytes,metabolism,Calcium,Calcium Signaling,Cell Line,Chickens,Gene Knockout Techniques,Inositol 1,4,5-Trisphosphate Receptors,Mitochondria,Oxidative Phosphorylation

          Comments

          Comment on this article