Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The immunopathogenesis of equine infectious anemia virus.

      Virus Research

      Animals, Antibodies, Viral, biosynthesis, Base Sequence, DNA, Viral, genetics, Equine Infectious Anemia, etiology, immunology, pathology, Genes, Viral, Horses, Immunity, Cellular, Infectious Anemia Virus, Equine, Virulence, pathogenicity

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 169

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis of dengue: challenges to molecular biology.

          Dengue viruses occur as four antigenically related but distinct serotypes transmitted to humans by Aedes aegypti mosquitoes. These viruses generally cause a benign syndrome, dengue fever, in the American and African tropics, and a severe syndrome, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), in Southeast Asian children. This severe syndrome, which recently has also been identified in children infected with the virus in Puerto Rico, is characterized by increased vascular permeability and abnormal hemostasis. It occurs in infants less than 1 year of age born to dengue-immune mothers and in children 1 year and older who are immune to one serotype of dengue virus and are experiencing infection with a second serotype. Dengue viruses replicate in cells of mononuclear phagocyte lineage, and subneutralizing concentrations of dengue antibody enhance dengue virus infection in these cells. This antibody-dependent enhancement of infection regulates dengue disease in human beings, although disease severity may also be controlled genetically, possibly by permitting and restricting the growth of virus in monocytes. Monoclonal antibodies show heterogeneous distribution of antigenic epitopes on dengue viruses. These epitopes serve to regulate disease: when antibodies to shared antigens partially neutralize heterotypic virus, infection and disease are dampened; enhancing antibodies alone result in heightened disease response. Further knowledge of the structure of dengue genomes should permit rapid advances in understanding the pathogenetic mechanisms of dengue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of ribosomal frameshifting in HIV-1 gag-pol expression.

            Based on precedents from other retroviruses, the precursor of the human immunodeficiency virus (HIV-1) reverse transcriptase is predicted to be a polyprotein with a relative molecular mass (Mr) of 160,000 (160K) encoded by both the viral pol gene and the upstream gag gene. These two genes lie in different translational reading frames, with the 3' end of gag overlapping the 5' end of pol by 205 or 241 nucleotides. Thus, production of the gag-pol fusion protein would require either messenger RNA processing or translational frameshifting. The latter mechanism has been shown in the synthesis of the gag-pol proteins of two other retroviruses, Rous sarcoma virus (RSV) and mouse mammary tumour virus (MMTV). Here we report that translation of HIV-1 RNA synthesized in vitro by SP6 RNA polymerase yields significant amounts of a gag-pol fusion protein, indicating that efficient ribosomal frameshifting also occurs within the HIV-1 gag-pol overlap region. Site-directed mutagenesis and amino-acid sequencing localized the site of frameshifting to a UUA leucine codon near the 5' end of the overlap.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antibody-enhanced dengue virus infection in primate leukocytes.

                Bookmark

                Author and article information

                Journal
                8067050

                Comments

                Comment on this article