26
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and preparation of derivatives of oleanolic and glycyrrhetinic acids with cytotoxic properties.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The structural modification of natural products with the aim to improve the anticancer activity is a popular current research direction. The pentacyclic triterpenoid compounds oleanolic acid (OA) and glycyrrhetinic acid (GA) are distributed widely in nature.

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Exclusion of Kaposi Sarcoma From Analysis of Cancer Burden—Reply

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cinnamic acid derivatives as anticancer agents-a review.

            Cinnamic acid and its phenolic analogues are natural substances. Chemically, in cinnamic acids the 3-phenyl acrylic acid functionality offers three main reactive sites; substitution at the phenyl ring, addition at the α,β- unsaturation and the reactions of the carboxylic acid functionality. Owing to these chemical aspects cinnamic acid derivatives received much attention in medicinal research as traditional as well as recent synthetic antitumor agents. We observed that in spite of their rich medicinal tradition, cinnamic acid derivatives and their anticancer potentials remained underutilized for several decades since the first published clinical use in 1905. In last two decades, there has been huge attention towards various cinnamoyl derivatives and their antitumor efficacy. This review provides a comprehensive and unprecedented literature compilation concerning the synthesis and biological evaluation of various cinnamoyl acids, esters, amides, hydrazides and related derivatives in anticancer research. We envisage that our effort in this review contributes a much needed and timely addition to the literature of medicinal research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              18beta-Glycyrrhetinic acid induces apoptotic cell death in SiHa cells and exhibits a synergistic effect against antibiotic anti-cancer drug toxicity.

              Defects in mitochondrial function have been shown to participate in the induction of cell death in cancer cells. The present study was designed to assess the toxic effect of 18beta-glycyrrhetinic acid against human cervix and uterus tumor cell line SiHa cells in relation to the mitochondria-mediated cell-death process and evaluate the combined toxic effect of 18beta-glycyrrhetinic acid and anti-cancer drugs. 18beta-Glycyrrhetinic acid induced the nuclear damage, changes in the mitochondrial membrane permeability, formation of reactive oxygen species and depletion of glutathione in SiHa cells. It caused cell death by inducing the increase in the pro-apoptotic Bax protein and cytochrome c levels, reduction in anti-apoptotic Bcl-2 level, subsequent caspase-3 activation and loss of the mitochondrial transmembrane potential. Unlike 18beta-glycyrrhetinic acid, a pro-compound glycyrrhizin up to 100 microM did not induce cell death and depletion of glutathione. Combined treatment of mitomycin c (or doxorubicin) and 18beta-glycyrrhetinic acid revealed a synergistic toxic effect. Meanwhile, combination of camptothecin and 18beta-glycyrrhetinic acid exhibited an additive cytotoxic effect. Results suggest that 18beta-glycyrrhetinic acid may cause cell death in SiHa cells by inducing the mitochondrial membrane permeability change, leading to cytochrome c release and caspase-3 activation. The effect may be associated with increased formation of reactive oxygen species and depletion of glutathione. Combined treatment of antibiotic anti-cancer drug and 18beta-glycyrrhetinic acid seems to exhibit a synergistic toxic effect.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug design, development and therapy
                Informa UK Limited
                1177-8881
                1177-8881
                2018
                : 12
                Affiliations
                [1 ] Marine College, Shandong University, Weihai, China.
                [2 ] Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, China.
                [3 ] School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China.
                [4 ] School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China.
                Article
                dddt-12-1321
                10.2147/DDDT.S166051
                5968802
                29861624
                1e01eec6-0074-488b-a004-7a6b5302de01
                History

                apoptosis,cytotoxic properties,glycyrrhetinic acid,oleanolic acid,synthesis

                Comments

                Comment on this article