51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Empagliflozin (EMPA), an inhibitor of the renal sodium-glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na(+) ([Na(+)]c) and Ca(2+) ([Ca(2+)]c) concentrations and decreased mitochondrial Ca(2+) concentration ([Ca(2+)]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na(+)]c, [Ca(2+)]c and [Ca(2+)]m in cardiomyocytes.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors.

          Empagliflozin is a selective sodium glucose cotransporter-2 (SGLT-2) inhibitor in clinical development for the treatment of type 2 diabetes mellitus. This study assessed pharmacological properties of empagliflozin in vitro and pharmacokinetic properties in vivo and compared its potency and selectivity with other SGLT-2 inhibitors. [(14)C]-alpha-methyl glucopyranoside (AMG) uptake experiments were performed with stable cell lines over-expressing human (h) SGLT-1, 2 and 4. Two new cell lines over-expressing hSGLT-5 and hSGLT-6 were established and [(14)C]-mannose and [(14)C]-myo-inositol uptake assays developed. Binding kinetics were analysed using a radioligand binding assay with [(3)H]-labelled empagliflozin and HEK293-hSGLT-2 cell membranes. Acute in vivo assessment of pharmacokinetics was performed with normoglycaemic beagle dogs and Zucker diabetic fatty (ZDF) rats. Empagliflozin has an IC(50) of 3.1 nM for hSGLT-2. Its binding to SGLT-2 is competitive with glucose (half-life approximately 1 h). Compared with other SGLT-2 inhibitors, empagliflozin has a high degree of selectivity over SGLT-1, 4, 5 and 6. Species differences in SGLT-1 selectivity were identified. Empagliflozin pharmacokinetics in ZDF rats were characterised by moderate total plasma clearance (CL) and bioavailability (BA), while in beagle dogs CL was low and BA was high. Empagliflozin is a potent and competitive SGLT-2 inhibitor with an excellent selectivity profile and the highest selectivity window of the tested SGLT-2 inhibitors over hSGLT-1. Empagliflozin represents an innovative therapeutic approach to treat diabetes. © 2011 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.

            Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na(+) ([Na(+)](i)) reduces mitochondrial Ca(2+) ([Ca(2+)](m)) by accelerating Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by [Ca(2+)](m), we speculated that in failing myocytes, elevated [Na(+)](i) promotes oxidative stress. We used a patch-clamp-based approach to simultaneously monitor cytosolic and mitochondrial Ca(2+) and, alternatively, mitochondrial H(2)O(2) together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by beta-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when [Ca(2+)](m) increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H(2)O(2) formation. This reactive oxygen species formation was potentiated when mitochondrial Ca(2+) uptake was blocked (by Ru360) or Ca(2+) efflux was accelerated (by elevation of [Na(+)](i)). In failing myocytes, H(2)O(2) formation was increased, which was prevented by reducing mitochondrial Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Besides matching energy supply and demand, mitochondrial Ca(2+) uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated [Na(+)](i) promotes reactive oxygen species formation by reducing mitochondrial Ca(2+) uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.

              Mitochondrial ATP production is continually adjusted to energy demand through coordinated increases in oxidative phosphorylation and NADH production mediated by mitochondrial Ca2+([Ca2+]m). Elevated cytosolic Na+ impairs [Ca2+]m accumulation during rapid pacing of myocytes, resulting in a decrease in NADH/NAD+ redox potential. Here, we determined 1) if accentuating [Ca2+]m accumulation prevents the impaired NADH response at high [Na+]i; 2) if [Ca2+]m handling and NADH/NAD+ balance during stimulation is impaired with heart failure (induced by aortic constriction); and 3) if inhibiting [Ca2+]m efflux improves NADH/NAD+ balance in heart failure. [Ca2+]m and NADH were recorded in cells at rest and during voltage clamp stimulation (4Hz) with either 5 or 15 mmol/L [Na+]i. Fast [Ca2+]m transients and a rise in diastolic [Ca2+]m were observed during electric stimulation. [Ca2+]m accumulation was [Na+]i-dependent; less [Ca2+]m accumulated in cells with 15 Na+ versus 5 mmol/L Na+ and NADH oxidation was evident at 15 mmol/L Na+, but not at 5 mmol/L Na+. Treatment with either the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (1 micromol/L) or raising cytosolic Pi (2 mmol/L) enhanced [Ca2+]m accumulation and prevented the NADH oxidation at 15 mmol/L [Na+]i. In heart failure myocytes, resting [Na+]i increased from 5.2+/-1.4 to 16.8+/-3.1mmol/L and net NADH oxidation was observed during pacing, whereas NADH was well matched in controls. Treatment with CGP-37157 or lowering [Na+]i prevented the impaired NADH response in heart failure. We conclude that high [Na+]i (at levels observed in heart failure) has detrimental effects on mitochondrial bioenergetics, and this impairment can be prevented by inhibiting the mitochondrial Na+/Ca2+ exchanger.
                Bookmark

                Author and article information

                Journal
                Diabetologia
                Diabetologia
                Springer Nature
                1432-0428
                0012-186X
                Mar 2017
                : 60
                : 3
                Affiliations
                [1 ] Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
                [2 ] Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands.
                [3 ] Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
                [4 ] Department of Physics and Astronomy, Faculty of Science, VU University, Amsterdam, the Netherlands.
                [5 ] University of Bordeaux, L'Institut du Rythmologie et Modélisation Cardiaque (LIRYC), Bordeaux, France.
                [6 ] Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands. c.j.zuurbier@amc.uva.nl.
                Article
                10.1007/s00125-016-4134-x
                10.1007/s00125-016-4134-x
                27752710
                dbb9de48-d420-4d3e-8c7f-bfcf49ae93ff
                History

                Glucose,Heart failure,Sodium,Calcium,Cardiac death,Diabetes
                Glucose, Heart failure, Sodium, Calcium, Cardiac death, Diabetes

                Comments

                Comment on this article