15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. Deep dorsal horn neurons were activated by von Frey filaments applied to the hind paw, and DNIC was induced by a pinch applied to the ear in isoflurane-anaesthetized animals. Spinal nerve ligation was the model of neuropathy. Diffuse noxious inhibitory control was present in control rats but abolished after neuropathy. α2 adrenoceptor mechanisms underlie DNIC because the antagonists, yohimbine and atipamezole, markedly attenuated this descending inhibition. We restored DNIC in spinal nerve ligated animals by blocking 5-HT3 descending facilitations with the antagonist ondansetron or by enhancing norepinephrine modulation through the use of reboxetine (a norepinephrine reuptake inhibitor, NRI) or tapentadol (μ-opioid receptor agonist and NRI). Additionally, ondansetron enhanced DNIC in normal animals. Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethical guidelines for investigations of experimental pain in conscious animals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensitization in patients with painful knee osteoarthritis.

            Pain is the dominant symptom in osteoarthritis (OA) and sensitization may contribute to the pain severity. This study investigated the role of sensitization in patients with painful knee OA by measuring (1) pressure pain thresholds (PPTs); (2) spreading sensitization; (3) temporal summation to repeated pressure pain stimulation; (4) pain responses after intramuscular hypertonic saline; and (5) pressure pain modulation by heterotopic descending noxious inhibitory control (DNIC). Forty-eight patients with different degrees of knee OA and twenty-four age- and sex-matched control subjects participated. The patients were separated into strong/severe (VAS>or=6) and mild/moderate pain (VAS<6) groups. PPTs were measured from the peripatellar region, tibialis anterior (TA) and extensor carpi radialis longus muscles before, during and after DNIC. Temporal summation to pressure was measured at the most painful site in the peripatellar region and over TA. Patients with severely painful OA pain have significantly lower PPT than controls. For all locations (knee, leg, and arm) significantly negative correlations between VAS and PPT were found (more pain, more sensitization). OA patients showed a significant facilitation of temporal summation from both the knee and TA and had significantly less DNIC as compared with controls. No correlations were found between standard radiological findings and clinical/experimental pain parameters. However, patients with lesions in the lateral tibiofemoral knee compartment had higher pain ratings compared with those with intercondylar and medial lesions. This study highlights the importance of central sensitization as an important manifestation in knee OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat

              We attempted to develop an experimental animal model for peripheral neuropathic pain. Under sodium pentobarbital anesthesia, both the L5 and L6 spinal nerves (group 1) or the L5 spinal nerve alone (group 2) of one side of the rat were tightly ligated. For comparison, a parallel study was conducted with another group of rats (group 3) which received a partial tight sciatic nerve ligation, a paradigm developed previously as a neuropathy model. Withdrawal latencies to application of radiant heat to the foot were tested for the next 16 weeks in all 3 groups. Sensitivity of the hind paw to mechanical stimulation was tested with von Frey filaments. The general behavior of each rat was noted during the entire test period. Results suggested that the surgical procedure in all 3 groups produced a long-lasting hyperalgesia to noxious heat (at least 5 weeks) and mechanical allodynia (at least 10 weeks) of the affected foot. In addition, there were behavioral signs of the presence of spontaneous pain in the affected foot. Therefore, we believe we have developed an experimental animal model for peripheral neuropathy using tight ligations of spinal nerves. The model manifests the symptoms of human patients with causalgia and is compatible with a previously developed neuropathy model. The present model has two unique features. First, the surgical procedure is stereotyped. Second, the levels of injured and intact spinal segments are completely separated, allowing independent experimental manipulations of the injured and intact spinal segments in future experiments to answer questions regarding mechanisms underlying causalgia.
                Bookmark

                Author and article information

                Journal
                Pain
                Pain
                Ovid Technologies (Wolters Kluwer Health)
                1872-6623
                0304-3959
                Sep 2015
                : 156
                : 9
                Affiliations
                [1 ] Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
                Article
                10.1097/j.pain.0000000000000240
                26010460
                27d0cd65-576f-45ef-85a7-f946c4fe059a
                History

                Comments

                Comment on this article