Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics.

      1 , 1

      The Journal of chemical physics

      AIP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigate the accuracy of a recently developed coherent modified Redfield theory (CMRT) in simulating excitation energy transfer (EET) dynamics. The CMRT is a secular non-Markovian quantum master equation that is derived by extending the modified Redfield theory to treat coherence dynamics in molecular excitonic systems. Herein, we systematically survey the applicability of the CMRT in a large EET parameter space through the comparisons of the CMRT EET dynamics in a dimer system with the numerically exact results. The results confirm that the CMRT exhibits a broad applicable range and allow us to locate the specific parameter regimes where CMRT fails to provide adequate results. Moreover, we propose an accuracy criterion based on the magnitude of second-order perturbation to characterize the applicability of CMRT and show that the criterion summarizes all the benchmark results and the physics described by CMRT. Finally, we employ the accuracy criterion to quantitatively compare the performance of CMRT to that of a small polaron quantum master equation approach. The comparison demonstrates the complementary nature of these two methods, and as a result, the combination of the two methods provides accurate simulations of EET dynamics for the full parameter space investigated in this study. Our results not only delicately evaluate the applicability of the CMRT but also reveal new physical insights for factors controlling the dynamics of EET that should be useful for developing more accurate and efficient methods for simulations of EET dynamics in molecular aggregate systems.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.

          Photosynthetic complexes are exquisitely tuned to capture solar light efficiently, and then transmit the excitation energy to reaction centres, where long term energy storage is initiated. The energy transfer mechanism is often described by semiclassical models that invoke 'hopping' of excited-state populations along discrete energy levels. Two-dimensional Fourier transform electronic spectroscopy has mapped these energy levels and their coupling in the Fenna-Matthews-Olson (FMO) bacteriochlorophyll complex, which is found in green sulphur bacteria and acts as an energy 'wire' connecting a large peripheral light-harvesting antenna, the chlorosome, to the reaction centre. The spectroscopic data clearly document the dependence of the dominant energy transport pathways on the spatial properties of the excited-state wavefunctions of the whole bacteriochlorophyll complex. But the intricate dynamics of quantum coherence, which has no classical analogue, was largely neglected in the analyses-even though electronic energy transfer involving oscillatory populations of donors and acceptors was first discussed more than 70 years ago, and electronic quantum beats arising from quantum coherence in photosynthetic complexes have been predicted and indirectly observed. Here we extend previous two-dimensional electronic spectroscopy investigations of the FMO bacteriochlorophyll complex, and obtain direct evidence for remarkably long-lived electronic quantum coherence playing an important part in energy transfer processes within this system. The quantum coherence manifests itself in characteristic, directly observable quantum beating signals among the excitons within the Chlorobium tepidum FMO complex at 77 K. This wavelike characteristic of the energy transfer within the photosynthetic complex can explain its extreme efficiency, in that it allows the complexes to sample vast areas of phase space to find the most efficient path.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lessons from nature about solar light harvesting.

            Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules; this electronic excitation is subsequently transferred to a suitable acceptor. For example, in photosynthesis, antenna complexes capture sunlight and direct the energy to reaction centres that then carry out the associated chemistry. In this Review, we describe the principles learned from studies of various natural antenna complexes and suggest how to elucidate strategies for designing light-harvesting systems. We envisage that such systems will be used for solar fuel production, to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control, or to transfer excitons over long distances. Also described are the notable properties of light-harvesting chromophores, spatial-energetic landscapes, the roles of excitonic states and quantum coherence, as well as how antennas are regulated and photoprotected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach.

              A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Forster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Forster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores.
                Bookmark

                Author and article information

                Journal
                J Chem Phys
                The Journal of chemical physics
                AIP Publishing
                1089-7690
                0021-9606
                Jan 21 2015
                : 142
                : 3
                Affiliations
                [1 ] Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei City 106, Taiwan.
                Article
                10.1063/1.4905721
                25612691

                Comments

                Comment on this article