28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science.

      Journal of science and medicine in sport / Sports Medicine Australia
      Anti-Infective Agents, analysis, immunology, Athletes, Biological Markers, Doping in Sports, Exercise, physiology, Female, Humans, Immunoglobulins, Male, Peptides, pharmacology, Saliva, chemistry, Sports, Steroids, Validation Studies as Topic

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper discusses the use of saliva analysis as a tool for monitoring steroid, peptide, and immune markers of sports training. Salivary gland physiology, regarding the regulation and stimulation of saliva secretion, as well as methodological issues including saliva collection, storage and analysis are addressed in this paper. The effects of exercise on saliva composition are then considered. Exercise elicits changes in salivary levels of steroid hormones, immunoglobulins, antimicrobial proteins and enzymes. Cortisol, testosterone and dehydroepiandrosterone can be assessed in saliva, providing a non-invasive option to assess the catabolic and anabolic effects of exercise. Validation studies using blood and salivary measures of steroid hormones are addressed in this paper. Effects of acute exercise and training on salivary immunoglobulins (SIgA, SIgM, SIgG) and salivary antimicrobial proteins, including α-amylase, lysozyme and lactoferrin, are also discussed. Analysis of cortisol and testosterone in saliva may help detect the onset of non-functional overreaching and subsequently may help to prevent the development of overtraining syndrome. Assessment of salivary immunoglobulins and antimicrobial proteins has been shown to successfully represent the effects of exercise on mucosal immunity. Increases in SIgA and antimicrobial proteins concentration and/or secretion rate are associated with acute exercise whereas conversely, decreases have been reported in athletes over a training season leaving the athlete susceptible for upper respiratory tract infections. The measurement of physiological biomarkers in whole saliva can provide a significant tool for assessing the immunological and endocrinological status associated with exercise and training. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: not found
          • Article: not found

          How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hormonal Responses and Adaptations to Resistance Exercise and Training

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise and circulating cortisol levels: the intensity threshold effect.

              This study examined the influence of exercise intensity upon the cortisol response of the hypothalamic-pituitary-adrenal (HPA) axis. Specifically, we examined exercise at intensities of 40, 60, and 80% maximal oxygen uptake (VO2max) in an attempt to determine the intensity necessary to provoke an increase in circulating cortisol. Twelve active moderately trained men performed 30 min of exercise at intensities of 40, 60, and 80% of their VO2max, as well as a 30-min resting-control session involving no exercise on separate days. Confounding factors such as time of day--circadian rhythms, prior diet--activity patterns, psychological stress, and levels of exercise training were controlled. Cortisol and ACTH were assessed in blood collected immediately before (pre-) and after (post-) each experimental session. Statistical analysis involved repeated measures analysis of variance and Tukey post-hoc testing. The percent change in cortisol from pre- to post-sampling at each session was: resting-control, 40, 60, and 80% sessions (mean+/-SD) =-6.6+/-3.5%, +5.7+/-11.0%, +39.9+/-11.8%, and +83.1+/-18.5%, respectively. The 60% and 80% intensity magnitude of change was significantly greater than in the other sessions, as well as from one to another. The ACTH responses mirrored those of cortisol, but only the 80% exercise provoked a significant (p<0.05) increase pre- to post-exercise. The calculated changes in plasma volume for the resting-control, 40%, 60%, and 80% sessions were: +2.2+/-3.0%, -9.9+/-5.0%, -15.6+/-3.5%, and -17.2+/-3.3%, respectively. Collectively, the cortisol findings support the view that moderate to high intensity exercise provokes increases in circulating cortisol levels. These increases seem due to a combination of hemoconcentration and HPA axis stimulus (ACTH). In contrast, low intensity exercise (40%) does not result in significant increases in cortisol levels, but, once corrections for plasma volume reduction occurred and circadian factors were examined, low intensity exercise actually resulted in a reduction in circulating cortisol levels.
                Bookmark

                Author and article information

                Comments

                Comment on this article