86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

      Malaria Journal
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids.

            A field trial of permethrin-impregnated bednets and curtains was initiated in Western Kenya in 1990, and a strain of Anopheles gambiae showing reduced susceptibility to permethrin was colonized from this site in 1992. A leucine-phenylalanine substitution at position 1014 of the voltage-gated sodium channel is associated with resistance to permethrin and DDT in many insect species, including Anopheles gambiae from West Africa. We cloned and sequenced a partial sodium channel cDNA from the Kenyan permethrin-resistant strain and we identified an alternative substitution (leucine to serine) at the same position, which is linked to the inheritance of permethrin resistance in the F(2) progeny of genetic crosses between susceptible and resistant individuals. The diagnostic polymerase chain reaction (PCR) developed by Martinez-Torres et al. [(1998) Insect Mol Biol 7: 179-184] to detect kdr alleles in field populations of An. gambiae will not detect the Kenyan allele and hence reliance on this assay may lead to an underestimate of the prevalence of pyrethroid resistance in this species. We adapted the diagnostic PCR to detect the leucine-serine mutation and with this diagnostic we were able to demonstrate that this kdr allele was present in individuals collected from the Kenyan trial site in 1986, prior to the introduction of pyrethroid-impregnated bednets. The An. gambiae sodium channel was physically mapped to chromosome 2L, division 20C. This position corresponds to the location of a major quantitative trait locus determining resistance to permethrin in the Kenyan strain of An. gambiae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allelic discrimination using fluorogenic probes and the 5' nuclease assay.

              K Livak (1999)
              Large-scale screening for known polymorphisms will require techniques with few steps and the ability to automate each of these steps. In this regard, the 5' nuclease, or TaqMan, PCR assay is especially attractive. A fluorogenic probe, consisting of an oligonucleotide labeled with both a fluorescent reporter dye and a quencher dye, is included in a typical PCR. Amplification of the probe-specific product causes cleavage of the probe, generating an increase in reporter fluorescence. By using different reporter dyes, cleavage of allele-specific probes can be detected in a single PCR. The 5' nuclease assay has been successfully used to discriminate alleles that differ by a single base substitution. Guidelines have been developed so that an assay for any single nucleotide polymorphism (SNP) can be quickly designed and implemented. All assays are performed using a single reaction buffer and single thermocycling protocol. Furthermore, a standard method of analysis has been developed that enables automated genotype determination. Applications of this assay have included typing a number of polymorphisms in human drug metabolism genes.
                Bookmark

                Author and article information

                Journal
                10.1186/1475-2875-6-111

                Comments

                Comment on this article