37
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Regulation of acid-base transporters by vasopressin in the kidney collecting duct of Brattleboro rat.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of these studies was to examine the effects of long-term vasopressin treatment on acid-base transporters in the collecting duct of rat kidney.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The syndrome of inappropriate secretion of antidiuretic hormone.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension.

              Pendrin is an anion exchanger expressed along the apical plasma membrane and apical cytoplasmic vesicles of type B and of non-A, non-B intercalated cells of the distal convoluted tubule, connecting tubule, and cortical collecting duct. Thus, Pds (Slc26a4) is a candidate gene for the putative apical anion-exchange process of the type B intercalated cell. Because apical anion exchange-mediated transport is upregulated with deoxycorticosterone pivalate (DOCP), we tested whether Pds mRNA and protein expression in mouse kidney were upregulated after administration of this aldosterone analogue by using quantitative real-time polymerase chain reaction as well as light and electron microscopic immunolocalization. In kidneys from DOCP-treated mice, Pds mRNA increased 60%, whereas pendrin protein expression in the apical plasma membrane increased 2-fold in non-A, non-B intercalated cells and increased 6-fold in type B cells. Because pendrin transports HCO3- and Cl-, we tested whether DOCP treatment unmasks abnormalities in acid-base or NaCl balance in Pds (-/-) mice. In the absence of DOCP, arterial pH, systolic blood pressure, and body weight were similar in Pds (+/+) and Pds (-/-) mice. After DOCP treatment, weight gain and hypertension were observed in Pds (+/+) but not in Pds (-/-) mice. Moreover, after DOCP administration, metabolic alkalosis was more severe in Pds (-/-) than Pds (+/+) mice. We conclude that pendrin is upregulated with aldosterone analogues and is critical in the pathogenesis of mineralocorticoid-induced hypertension and metabolic alkalosis.
                Bookmark

                Author and article information

                Journal
                Am. J. Nephrol.
                American journal of nephrology
                S. Karger AG
                0250-8095
                0250-8095
                2006
                : 26
                : 2
                Affiliations
                [1 ] Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA. hassane.amlal@uc.edu
                Article
                93305
                10.1159/000093305
                16699257
                46e2e8d9-f807-47e2-9d1d-45e047dcf82d
                History

                Comments

                Comment on this article