39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health

      1
      The American Journal of Clinical Nutrition
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New knowledge of the biological and clinical importance of the steroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] and its receptor, the vitamin D receptor (VDR), has resulted in significant contributions to good bone health. However, worldwide reports have highlighted a variety of vitamin D insufficiency and deficiency diseases. Despite many publications and scientific meetings reporting advances in vitamin D science, a disturbing realization is growing that the newer scientific and clinical knowledge is not being translated into better human health. Over the past several decades, the biological sphere of influence of vitamin D(3), as defined by the tissue distribution of the VDR, has broadened at least 9-fold from the target organs required for calcium homeostasis (intestine, bone, kidney, and parathyroid). Now, research has shown that the pluripotent steroid hormone 1alpha,25(OH)(2)D(3) initiates the physiologic responses of >/=36 cell types that possess the VDR. In addition to the kidney's endocrine production of circulating 1alpha,25(OH)(2)D(3,) researchers have found a paracrine production of this steroid hormone in >/=10 extrarenal organs. This article identifies the fundamentals of the vitamin D endocrine system, including its potential for contributions to good health in 5 physiologic arenas in which investigators have clearly documented new biological actions of 1alpha,25(OH)(2)D(3) through the VDR. As a consequence, the nutritional guidelines for vitamin D(3) intake (defined by serum hydroxyvitamin D(3) concentrations) should be reevaluated, taking into account the contributions to good health that all 36 VDR target organs can provide.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain.

          Despite a growing body of evidence that Vitamin D is involved in mammalian brain functioning, there has been a lack of direct evidence about its role in the human brain. This paper reports, for the first time, the distribution of the 1,25-dihydroxyvitamin D3 receptor (VDR), and 1alpha-hydroxylase (1alpha-OHase), the enzyme responsible for the formation of the active vitamin in the human brain. The receptor and the enzyme were found in both neurons and glial cells in a regional and layer-specific pattern. The VDR was restricted to the nucleus whilst 1alpha-OHase was distributed throughout the cytoplasm. The distribution of the VDR in human brain was strikingly similar to that reported in rodents. Many regions contained equivalent amounts of both the VDR and 1alpha-OHase, however the macrocellular cells within the nucleus basalis of Meynert (NBM) and the Purkinje cells in the cerebellum expressed 1alpha-OHase in the absence of VDR. The strongest immunohistochemical staining for both the receptor and enzyme was in the hypothalamus and in the large (presumably dopaminergic) neurons within the substantia nigra. The observed distribution of the VDR is consistent with the proposal that Vitamin D operates in a similar fashion to the known neurosteroids. The widespread distribution of 1alpha-OHase and the VDR suggests that Vitamin D may have autocrine/paracrine properties in the human brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caveolae: from cell biology to animal physiology.

            Among the membrane compartments of a cell, vesicles known as "caveolae" have long defied functional characterization. However, since the identification of a family of proteins termed "caveolins", that form and reside in caveolae, a better understanding has emerged. It is now clear that caveolae do not merely play a singular role in the cell, but are pleiotropic in nature-serving to modulate many cellular functions. The purpose of this review is to explicate what is known about caveolins/caveolae and highlight growing areas of caveolar research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism.

              An essential element of the innate immune response to injury is the capacity to recognize microbial invasion and stimulate production of antimicrobial peptides. We investigated how this process is controlled in the epidermis. Keratinocytes surrounding a wound increased expression of the genes coding for the microbial pattern recognition receptors CD14 and TLR2, complementing an increase in cathelicidin antimicrobial peptide expression. These genes were induced by 1,25(OH)2 vitamin D3 (1,25D3; its active form), suggesting a role for vitamin D3 in this process. How 1,25D3 could participate in the injury response was explained by findings that the levels of CYP27B1, which converts 25OH vitamin D3 (25D3) to active 1,25D3, were increased in wounds and induced in keratinocytes in response to TGF-beta1. Blocking the vitamin D receptor, inhibiting CYP27B1, or limiting 25D3 availability prevented TGF-beta1 from inducing cathelicidin, CD14, or TLR2 in human keratinocytes, while CYP27B1-deficient mice failed to increase CD14 expression following wounding. The functional consequence of these observations was confirmed by demonstrating that 1,25D3 enabled keratinocytes to recognize microbial components through TLR2 and respond by cathelicidin production. Thus, we demonstrate what we believe to be a previously unexpected role for vitamin D3 in innate immunity, enabling keratinocytes to recognize and respond to microbes and to protect wounds against infection.
                Bookmark

                Author and article information

                Journal
                The American Journal of Clinical Nutrition
                Oxford University Press (OUP)
                0002-9165
                1938-3207
                August 2008
                August 01 2008
                August 2008
                August 01 2008
                : 88
                : 2
                : 491S-499S
                Affiliations
                [1 ] From the Department of Biochemistry and Division of Biomedical Sciences, University of California, Riverside, CA
                Article
                10.1093/ajcn/88.2.491S
                e8988a75-fd18-4f97-9d1e-30a70d9a0744
                © 2008
                History

                Comments

                Comment on this article

                scite_

                Similar content862

                Cited by231

                Most referenced authors902