145
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer.

      Nature

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diagnosis of pancreatic ductal adenocarcinoma (PDAC) is associated with a dismal prognosis despite current best therapies; therefore new treatment strategies are urgently required. Numerous studies have suggested that epithelial-to-mesenchymal transition (EMT) contributes to early-stage dissemination of cancer cells and is pivotal for invasion and metastasis of PDAC. EMT is associated with phenotypic conversion of epithelial cells into mesenchymal-like cells in cell culture conditions, although such defined mesenchymal conversion (with spindle-shaped morphology) of epithelial cells in vivo is rare, with quasi-mesenchymal phenotypes occasionally observed in the tumour (partial EMT). Most studies exploring the functional role of EMT in tumours have depended on cell-culture-induced loss-of-function and gain-of-function experiments involving EMT-inducing transcription factors such as Twist, Snail and Zeb1 (refs 2, 3, 7-10). Therefore, the functional contribution of EMT to invasion and metastasis remains unclear, and genetically engineered mouse models to address a causal connection are lacking. Here we functionally probe the role of EMT in PDAC by generating mouse models of PDAC with deletion of Snail or Twist, two key transcription factors responsible for EMT. EMT suppression in the primary tumour does not alter the emergence of invasive PDAC, systemic dissemination or metastasis. Suppression of EMT leads to an increase in cancer cell proliferation with enhanced expression of nucleoside transporters in tumours, contributing to enhanced sensitivity to gemcitabine treatment and increased overall survival of mice. Collectively, our study suggests that Snail- or Twist-induced EMT is not rate-limiting for invasion and metastasis, but highlights the importance of combining EMT inhibition with chemotherapy for the treatment of pancreatic cancer.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found

          Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism

          Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer.

            A better understanding of drug resistance mechanisms is required to improve outcomes in patients with pancreatic cancer. Here, we characterized patterns of sensitivity and resistance to three conventional chemotherapeutic agents with divergent mechanisms of action [gemcitabine, 5-fluorouracil (5-FU), and cisplatin] in pancreatic cancer cells. Four (L3.6pl, BxPC-3, CFPAC-1, and SU86.86) were sensitive and five (PANC-1, Hs766T, AsPC-1, MIAPaCa-2, and MPanc96) were resistant to all three agents based on GI(50) (50% growth inhibition). Gene expression profiling and unsupervised hierarchical clustering revealed that the sensitive and resistant cells formed two distinct groups and differed in expression of specific genes, including several features of "epithelial to mesenchymal transition" (EMT). Interestingly, an inverse correlation between E-cadherin and its transcriptional suppressor, Zeb-1, was observed in the gene expression data and was confirmed by real-time PCR. Independent validation experiment using five new pancreatic cancer cell lines confirmed that an inverse correlation between E-cadherin and Zeb-1 correlated closely with resistance to gemcitabine, 5-FU, and cisplatin. Silencing Zeb-1 in the mesenchymal lines not only increased the expression of E-cadherin but also other epithelial markers, such as EVA1 and MAL2, and restored drug sensitivity. Importantly, immunohistochemical analysis of E-cadherin and Zeb-1 in primary tumors confirmed that expression of the two proteins was mutually exclusive (P = 0.012). Therefore, our results suggest that Zeb-1 and other regulators of EMT may maintain drug resistance in human pancreatic cancer cells, and therapeutic strategies to inhibit Zeb-1 and reverse EMT should be evaluated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              limma: Linear Models for Microarray Data

              G Smyth (2005)
                Bookmark

                Author and article information

                Journal
                26560028
                10.1038/nature16064

                Comments

                Comment on this article