29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Endothelial progenitor cells in chronic renal insufficiency.

      Kidney & blood pressure research
      Atherosclerosis, pathology, physiopathology, Endothelial Cells, physiology, Humans, Renal Insufficiency, Chronic, Stem Cells

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is growing evidence for a role of endothelial progenitor cells (EPCs) in the repair of damaged endothelium. It remains unclear which cell populations are most useful for clinical trials. Administration of drugs increasing EPC numbers and/or improving functional properties seems attractive. Further basic research is necessary to understand the mechanisms of mobilization, differentiation and homing of EPC in general and in particular under uremic conditions. Nephrologists should search for strategies to ameliorate EPC dysfunction of uremia. In this way it might be possible to test whether improved EPC biology is associated with decreased cardiovascular mortality in uremic humans. In any such studies the difficulties are going to be related to the complex procedures for EPC isolation, the testing of their identity and differentiation and their propagation before use. Copyright 2006 S. Karger AG, Basel.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.

          Recent studies provide increasing evidence that postnatal neovascularization involves bone marrow-derived circulating endothelial progenitor cells (EPCs). The regulation of EPCs in patients with coronary artery disease (CAD) is unclear at present. Therefore, we determined the number and functional activity of EPCs in 45 patients with CAD and 15 healthy volunteers. The numbers of isolated EPCs and circulating CD34/kinase insert domain receptor (KDR)-positive precursor cells were significantly reduced in patients with CAD by approximately 40% and 48%, respectively. To determine the influence of atherosclerotic risk factors, a risk factor score including age, sex, hypertension, diabetes, smoking, positive family history of CAD, and LDL cholesterol levels was used. The number of risk factors was significantly correlated with a reduction of EPC levels (R=-0.394, P=0.002) and CD34-/KDR-positive cells (R=-0.537, P<0.001). Analysis of the individual risk factors demonstrated that smokers had significantly reduced levels of EPCs (P<0.001) and CD34-/KDR-positive cells (P=0.003). Moreover, a positive family history of CAD was associated with reduced CD34-/KDR-positive cells (P=0.011). Most importantly, EPCs isolated from patients with CAD also revealed an impaired migratory response, which was inversely correlated with the number of risk factors (R=-0.484, P=0.002). By multivariate analysis, hypertension was identified as a major independent predictor for impaired EPC migration (P=0.043). The present study demonstrates that patients with CAD revealed reduced levels and functional impairment of EPCs, which correlated with risk factors for CAD. Given the important role of EPCs for neovascularization of ischemic tissue, the decrease of EPC numbers and activity may contribute to impaired vascularization in patients with CAD. The full text of this article is available at http://www.circresaha.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial progenitor cells: characterization and role in vascular biology.

            Infusion of different hematopoietic stem cell populations and ex vivo expanded endothelial progenitor cells augments neovascularization of tissue after ischemia and contributes to reendothelialization after endothelial injury, thereby, providing a novel therapeutic option. However, controversy exists with respect to the identification and the origin of endothelial progenitor cells. Overall, there is consensus that endothelial progenitor cells can derive from the bone marrow and that CD133/VEGFR2 cells represent a population with endothelial progenitor capacity. However, increasing evidence suggests that there are additional bone marrow-derived cell populations (eg, myeloid cells, "side population" cells, and mesenchymal cells) and non-bone marrow-derived cells, which also can give rise to endothelial cells. The characterization of the different progenitor cell populations and their functional properties are discussed. Mobilization and endothelial progenitor cell-mediated neovascularization is critically regulated. Stimulatory (eg, statins and exercise) or inhibitory factors (risk factors for coronary artery disease) modulate progenitor cell levels and, thereby, affect the vascular repair capacity. Moreover, recruitment and incorporation of endothelial progenitor cells requires a coordinated sequence of multistep adhesive and signaling events including adhesion and migration (eg, by integrins), chemoattraction (eg, by SDF-1/CXCR4), and finally the differentiation to endothelial cells. This review summarizes the mechanisms regulating endothelial progenitor cell-mediated neovascularization and reendothelialization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial progenitor cells: mobilization, differentiation, and homing.

              Postnatal bone marrow contains a subtype of progenitor cells that have the capacity to migrate to the peripheral circulation and to differentiate into mature endothelial cells. Therefore, these cells have been termed endothelial progenitor cells (EPCs). The isolation of EPCs by adherence culture or magnetic microbeads has been described. In general, EPCs are characterized by the expression of 3 markers, CD133, CD34, and the vascular endothelial growth factor receptor-2. During differentiation, EPCs obviously lose CD133 and start to express CD31, vascular endothelial cadherin, and von Willebrand factor. EPCs seem to participate in endothelial repair and neovascularization of ischemic organs. Clinical studies using EPCs for neovascularization have just been started; however, the mechanisms stimulating or inhibiting the differentiation of EPC in vivo and the signals causing their migration and homing to sites of injured endothelium or extravascular tissue are largely unknown at present. Thus, future studies will help to explore areas of potential basic research and clinical application of EPCs.
                Bookmark

                Author and article information

                Journal
                16582574
                10.1159/000092484

                Chemistry
                Atherosclerosis,pathology,physiopathology,Endothelial Cells,physiology,Humans,Renal Insufficiency, Chronic,Stem Cells

                Comments

                Comment on this article

                scite_

                Similar content785

                Cited by4

                Most referenced authors998