Blog
About

276
views
0
recommends
+1 Recommend
1 collections
    10
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A globally coherent fingerprint of climate change impacts across natural systems.

      Nature

      Probability, Population Dynamics, Models, Theoretical, Greenhouse Effect, Geography, Ecosystem, Databases, Factual, Climate, metabolism, Carbon Dioxide, Biological Evolution, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid changes in flowering time in British plants.

          The average first flowering date of 385 British plant species has advanced by 4.5 days during the past decade compared with the previous four decades: 16% of species flowered significantly earlier in the 1990s than previously, with an average advancement of 15 days in a decade. Ten species (3%) flowered significantly later in the 1990s than previously. These data reveal the strongest biological signal yet of climatic change. Flowering is especially sensitive to the temperature in the previous month, and spring-flowering species are most responsive. However, large interspecific differences in this response will affect both the structure of plant communities and gene flow between species as climate warms. Annuals are more likely to flower early than congeneric perennials, and insect-pollinated species more than wind-pollinated ones.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Impacts of Extreme Weather and Climate on Terrestrial Biota*

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phenology. Responses to a warming world.

                Bookmark

                Author and article information

                Journal
                10.1038/nature01286
                12511946

                Comments

                Comment on this article