45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Practical Approach to the Management of Cancer Patients During the Novel Coronavirus Disease 2019 (COVID-19) Pandemic: An International Collaborative Group : A Practical Approach to the Management of Cancer Patients During the Novel Coronavirus Disease 2019 (COVID-19) Pandemic: An International Collaborativ

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract The outbreak of coronavirus disease 2019 (COVID‐19) has rapidly spread globally since being identified as a public health emergency of major international concern and has now been declared a pandemic by the World Health Organization (WHO). In December 2019, an outbreak of atypical pneumonia, known as COVID‐19, was identified in Wuhan, China. The newly identified zoonotic coronavirus, severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), is characterized by rapid human‐to‐human transmission. Many cancer patients frequently visit the hospital for treatment and disease surveillance. They may be immunocompromised due to the underlying malignancy or anticancer therapy and are at higher risk of developing infections. Several factors increase the risk of infection, and cancer patients commonly have multiple risk factors. Cancer patients appear to have an estimated twofold increased risk of contracting SARS‐CoV‐2 than the general population. With the WHO declaring the novel coronavirus outbreak a pandemic, there is an urgent need to address the impact of such a pandemic on cancer patients. This include changes to resource allocation, clinical care, and the consent process during a pandemic. Currently and due to limited data, there are no international guidelines to address the management of cancer patients in any infectious pandemic. In this review, the potential challenges associated with managing cancer patients during the COVID‐19 infection pandemic will be addressed, with suggestions of some practical approaches. Implications for Practice The main management strategies for treating cancer patients during the COVID‐19 epidemic include clear communication and education about hand hygiene, infection control measures, high‐risk exposure, and the signs and symptoms of COVID‐19. Consideration of risk and benefit for active intervention in the cancer population must be individualized. Postponing elective surgery or adjuvant chemotherapy for cancer patients with low risk of progression should be considered on a case‐by‐case basis. Minimizing outpatient visits can help to mitigate exposure and possible further transmission. Telemedicine may be used to support patients to minimize number of visits and risk of exposure. More research is needed to better understand SARS‐CoV‐2 virology and epidemiology.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

            Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

              Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
                Bookmark

                Author and article information

                Journal
                ONCO
                The Oncologist
                The Oncol
                Alphamed Press
                10837159
                April 03 2020
                Affiliations
                [1 ]Medical Oncology Department; Alzahra Hospital Dubai; Dubai United Arab Emirates
                [2 ]Department of Medicine; University of Sharjah; Sharjah United Arab Emirates
                [3 ]Emirates Oncology Society; Dubai United Arab Emirates
                [4 ]Department of Health Research Methods; Evidence, and Impact; Hamilton Ontario Canada
                [5 ]Medicine, McMaster University; Hamilton Ontario Canada
                [6 ]Department of Hematology; Kuwait Cancer Control Center; Kuwait
                [7 ]Division of Infectious Disease, Department of Medicine; University of Toronto; Toronto Ontario Canada
                [8 ]Department of Infectious Diseases, Infection Control, and Employee Health; The University of Texas MD Anderson Cancer Center; Houston Texas USA
                [9 ]Min-Sheng General Hospital; Taoyuan City Taiwan
                [10 ]Department of Gastrointestinal Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas USA
                [11 ]Department of Breast Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston Texas USA
                [12 ]Divisions of Radiation Oncology and Medical Sciences; National Cancer Center Singapore; Singapore
                [13 ]Oncology Academic Program, Duke-NUS Medical School; Singapore
                [14 ]Cong Hua's Institute; Singapore
                [15 ]Department of Oncology, Juravinski Cancer Centre; McMaster University; Hamilton Ontario Canada
                [16 ]Windsor Regional Cancer Center; Windsor Ontario Canada
                [17 ]Department of Oncology; Schulich School of Medicine, University of Western Ontario; London Ontario Canada
                [18 ]Department of Oncology and Hemato-Oncology University of Milan; Milan Italy
                [19 ]Division of Early Drug Development for Innovative Therapy; University of Milan; Milan Italy
                [20 ]European Institute of Oncology; Milan Italy
                [21 ]IRCCS, University of Milano; Milan Italy
                [22 ]Vanderbilt-Ingram Cancer Center; Nashville Tennessee USA
                [23 ]West Cancer Center, University of Tennessee; Memphis Tennessee USA
                [24 ]Department of Radiation and Medical Oncology; Zhongnan Hospital of Wuhan University; Wuhan People's Republic of China
                Article
                10.1634/theoncologist.2020-0213
                b8c66420-cdce-4794-ac67-6eb7a45fa4b5
                © 2020

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article