67
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endocytosis and exocytosis of nanoparticles in mammalian cells.

      International Journal of Nanomedicine
      cancer cell, drug delivery, endocytosis, exocytosis, macrophage, nanoparticle, toxicity

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Engineered nanoparticles that can be injected into the human body hold tremendous potential to detect and treat complex diseases. Understanding of the endocytosis and exocytosis mechanisms of nanoparticles is essential for safe and efficient therapeutic application. In particular, exocytosis is of significance in the removal of nanoparticles with drugs and contrast agents from the body, while endocytosis is of great importance for the targeting of nanoparticles in disease sites. Here, we review the recent research on the endocytosis and exocytosis of functionalized nanoparticles based on various sizes, shapes, and surface chemistries. We believe that this review contributes to the design of safe nanoparticles that can efficiently enter and leave human cells and tissues.

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle-mediated cellular response is size-dependent.

          Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with antibodies can regulate the process of membrane receptor internalization. The binding and activation of membrane receptors and subsequent protein expression strongly depend on nanoparticle size. Although all nanoparticles within the 2-100 nm size range were found to alter signalling processes essential for basic cell functions (including cell death), 40- and 50-nm nanoparticles demonstrated the greatest effect. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. The findings presented here may assist in the design of nanoscale delivery and therapeutic systems and provide insights into nanotoxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.

            We investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells. We determined that transferrin-coated Au NP entered the cells via clathrin-mediated endocytosis pathway. The NPs exocytosed out of the cells in a linear relationship to size. This was different than the relationship between uptake and size. Furthermore, we developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines. These studies will provide guidelines for developing NPs for imaging and drug delivery applications, which will require "controlling" NP accumulation rate. These studies will also have implications in determining nanotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The selective value of bacterial shape.

              Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
                Bookmark

                Author and article information

                Journal
                24872703
                4024976
                10.2147/IJN.S26592

                cancer cell,drug delivery,endocytosis,exocytosis,macrophage,nanoparticle,toxicity

                Comments

                Comment on this article