25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Prepare cells to repair the heart: mesenchymal stem cells for the treatment of heart failure.

      American journal of nephrology
      Gene Expression, Heart Failure, therapy, Humans, Mesenchymal Stem Cell Transplantation, Mesenchymal Stromal Cells, cytology, Paracrine Communication

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heart failure is one of the most important cardiovascular diseases, with high mortality, and invasive treatment such as mechanical circulatory support and cardiac transplantation is sometimes required for severe heart failure. Therefore, the development of less invasive and more effective therapeutic strategies is desired. Cell therapy is attracting growing interest as a new approach for the treatment of heart failure. As a cell source, various kinds of stem/progenitor cells such as bone marrow cells, endothelial progenitor cells, mesenchymal stem cells (MSC) and cardiac stem cells have been investigated for their efficacy and safety. Especially, bone marrow-derived MSC possess multipotency and can be easily expanded in culture, and are thus an attractive therapeutic tool for heart failure. Recent studies have revealed the underlying mechanisms of MSC in cardiac repair: MSC not only differentiate into specific cell types such as cardiomyocytes and vascular endothelial cells, but also secrete a variety of paracrine angiogenic and cytoprotective factors. It has also been suggested that endogenous MSC as well as exogenously transplanted MSC migrate and participate in cardiac repair. Based on these findings, several clinical trials have just been started to evaluate the safety and efficacy of MSC for the treatment of heart failure. 2007 S. Karger AG, Basel

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal progenitor cells in human umbilical cord blood.

          Haemopoiesis is sustained by two main cellular components, the haematopoietic cells (HSCs) and the mesenchymal progenitor cells (MPCs). MPCs are multipotent and are the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of HSCs in umbilical cord blood (UCB) is well known, that of MPCs has been not fully evaluated. In this study, we examined the ability of UCB harvests to generate in culture cells with characteristics of MPCs. Results showed that UCB-derived mononuclear cells, when set in culture, gave rise to adherent cells, which exhibited either an osteoclast- or a mesenchymal-like phenotype. Cells with the osteoclast phenotype were multinucleated, expressed TRAP activity and antigens CD45 and CD51/CD61. In turn, cells with the mesenchymal phenotype displayed a fibroblast-like morphology and expressed several MPC-related antigens (SH2, SH3, SH4, ASMA, MAB 1470, CD13, CD29 and CD49e). Our results suggest that preterm, as compared with term, cord blood is richer in mesenchymal progenitors, similar to haematopoietic progenitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.

            We recently demonstrated that marrow stromal cells (MSCs) augment collateral remodeling through release of several cytokines such as VEGF and bFGF rather than via cell incorporation into new or remodeling vessels. The present study was designed to characterize the full spectrum of cytokine genes expressed by MSCs and to further examine the role of paracrine mechanisms that underpin their therapeutic potential. Normal human MSCs were cultured under normoxic or hypoxic conditions for 72 hours. The gene expression profile of the cells was determined using Affymetrix GeneChips representing 12 000 genes. A wide array of arteriogenic cytokine genes were expressed at baseline, and several were induced >1.5-fold by hypoxic stress. The gene array data were confirmed using ELISA assays and immunoblotting of the MSC conditioned media (MSC(CM)). MSC(CM) promoted in vitro proliferation and migration of endothelial cells in a dose-dependent manner; anti-VEGF and anti-FGF antibodies only partially attenuated these effects. Similarly, MSC(CM) promoted smooth muscle cell proliferation and migration in a dose-dependent manner. Using a murine hindlimb ischemia model, murine MSC(CM) enhanced collateral flow recovery and remodeling, improved limb function, reduced the incidence of autoamputation, and attenuated muscle atrophy compared with control media. These data indicate that paracrine signaling is an important mediator of bone marrow cell therapy in tissue ischemia, and that cell incorporation into vessels is not a prerequisite for their effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and expansion of adult cardiac stem cells from human and murine heart.

              Cardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. However, in the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. Recent studies have even surmised the existence of resident cardiac stem cells, endothelial cells generating cardiomyocytes by cell contact or extracardiac progenitors for cardiomyocytes, but these findings are still controversial. We describe the isolation of undifferentiated cells that grow as self-adherent clusters (that we have termed "cardiospheres") from subcultures of postnatal atrial or ventricular human biopsy specimens and from murine hearts. These cells are clonogenic, express stem and endothelial progenitor cell antigens/markers, and appear to have the properties of adult cardiac stem cells. They are capable of long-term self-renewal and can differentiate in vitro and after ectopic (dorsal subcutaneous connective tissue) or orthotopic (myocardial infarction) transplantation in SCID beige mouse to yield the major specialized cell types of the heart: myocytes (ie, cells demonstrating contractile activity and/or showing cardiomyocyte markers) and vascular cells (ie, cells with endothelial or smooth muscle markers).
                Bookmark

                Author and article information

                Journal
                17460394
                10.1159/000102000

                Chemistry
                Gene Expression,Heart Failure,therapy,Humans,Mesenchymal Stem Cell Transplantation,Mesenchymal Stromal Cells,cytology,Paracrine Communication

                Comments

                Comment on this article