12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Low-dose hyper-radiosensitivity of progressive and regressive cells isolated from a rat colon tumour: impact of DNA repair.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To ask whether highly metastatic sublines show more marked low-dose hyper-radiosensitivity (HRS) response than poorly metastatic ones.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses.

          DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSBs after physiologically relevant radiation doses is available. Many of the methods used to measure DSB repair inadvertently introduce this form of damage as part of the methodology, and hence are limited in their sensitivity. Here we present evidence that foci of gamma-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual DSBs. This finding allows the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods. Surprisingly, DSBs induced in cultures of nondividing primary human fibroblasts by very low radiation doses (approximately 1 mGy) remain unrepaired for many days, in strong contrast to efficient DSB repair that is observed at higher doses. However, the level of DSBs in irradiated cultures decreases to that of unirradiated cell cultures if the cells are allowed to proliferate after irradiation, and we present evidence that this effect may be caused by an elimination of the cells carrying unrepaired DSBs. The results presented are in contrast to current models of risk assessment that assume that cellular responses are equally efficient at low and high doses, and provide the opportunity to employ gamma-H2AX foci formation as a direct biomarker for human exposure to low quantities of ionizing radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer risks attributable to low doses of ionizing radiation: assessing what we really know.

            High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage.

              A sensitive and rapid in situ method was developed to visualize sites of single-stranded (ss) DNA in cultured cells and in experimental test animals. Anti-bromodeoxyuridine antibody recognizes the halogenated base analog incorporated into chromosomal DNA only when substituted DNA is in the single strand form. After treatment of cells with DNA-damaging agents or gamma irradiation, ssDNA molecules form nuclear foci in a dose-dependent manner within 60 min. The mammalian recombination protein Rad51 and the replication protein A then accumulate at sites of ssDNA and form foci, suggesting that these are sites of recombinational DNA repair.
                Bookmark

                Author and article information

                Journal
                Int. J. Radiat. Biol.
                International journal of radiation biology
                Informa UK Limited
                0955-3002
                0955-3002
                Jul 2008
                : 84
                : 7
                Affiliations
                [1 ] Institut National de la Sante et de la Recherche Medicale (INSERM), U601, Nantes, France.
                Article
                795327857
                10.1080/09553000802195331
                18661370
                b701014f-c840-49b3-8748-9aac1c5ffaa1
                History

                Comments

                Comment on this article