26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ospC diversity in Borrelia burgdorferi: different hosts are different niches.

      Genomics
      Animals, Antigens, Bacterial, genetics, Bacterial Outer Membrane Proteins, Borrelia burgdorferi, pathogenicity, Gene Frequency, Genetic Variation, Host-Parasite Interactions, Lipoproteins, Lyme Disease, transmission, Peromyscus, parasitology, Sciuridae, Selection, Genetic, Shrews

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outer surface protein C (ospC) locus of the Lyme disease bacterium, Borrelia burgdorferi, is at least an order of magnitude more variable than other genes in the species. This variation is classified into 22 ospC major groups, 15 of which are found in the northeastern United States. The frequency distributions of ospC within populations suggest that this locus is under balancing selection. In multiple-niche polymorphism, a type of balancing selection, diversity within a population can be maintained when the environment is heterogeneous and no one genotype has the highest fitness in all environments. Genetically different individuals within vertebrate species and different vertebrate species constitute diverse environments for B. burgdorferi. We examined four important host species of B. burgdorferi and found that the strains that infected each species had different sets of ospC major groups. We found no variation among conspecific hosts in the ospC major groups of their infecting strains. These results suggest multiple niches create balancing selection at the ospC locus.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk.

          The extent to which the biodiversity and community composition of ecosystems affect their functions is an issue that grows ever more compelling as human impacts on ecosystems increase. We present evidence that supports a novel function of vertebrate biodiversity, the buffering of human risk of exposure to Lyme-disease-bearing ticks. We tested the Dilution Effect model, which predicts that high species diversity in the community of tick hosts reduces vector infection prevalence by diluting the effects of the most competent disease reservoir, the ubiquitous white-footed mouse (Peromyscus leucopus). As habitats are degraded by fragmentation or other anthropogenic forces, some members of the host community disappear. Thus, species-poor communities tend to have mice, but few other hosts, whereas species-rich communities have mice, plus many other potential hosts. We demonstrate that the most common nonmouse hosts are relatively poor reservoirs for the Lyme spirochete and should reduce the prevalence of the disease by feeding, but rarely infecting, ticks. By accounting for nearly every host species' contribution to the number of larval ticks fed and infected, we show that as new host species are added to a depauperate community, the nymphal infection prevalence, a key risk factor, declines. We identify important "dilution hosts" (e.g., squirrels), characterized by high tick burdens, low reservoir competence, and high population density, as well as "rescue hosts" (e.g., shrews), which are capable of maintaining high disease risk when mouse density is low. Our study suggests that the preservation of vertebrate biodiversity and community composition can reduce the incidence of Lyme disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Genetic Equilibrium When More Than One Ecological Niche is Available

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations.

              Levels of neutral genetic diversity in populations subdivided into two demes were studied by multilocus stochastic simulations. The model includes deleterious mutations at loci throughout the genome, causing 'background selection', as well as a single locus at which a polymorphism is maintained, either by frequency-dependent selection or by local selective differences. These balanced polymorphisms induce long coalescence times at linked neutral loci, so that sequence diversity at these loci is enhanced at statistical equilibrium. We study how equilibrium neutral diversity levels are affected by the degree of population subdivision, the presence or absence of background selection, and the level of inbreeding of the population. The simulation results are compared with approximate analytical formulae, assuming the infinite sites neutral model. We discuss how balancing selection can be distinguished from local selection, by determining whether peaks of diversity in the region of the polymorphic locus are seen within or between demes. The width of such diversity peaks is shown to depend on the total species population size, rather than local deme sizes. We show that, with population subdivision, local selection enhances between-deme diversity even at neutral sites distant from the polymorphic locus, producing higher FST values than with no selection; very high values can be generated at sites close to a selected locus. Background selection also increases FST, mainly because of decreased diversity within populations, which implies that its effects may be distinguishable from those of local selection. Both effects are stronger in selfing than outcrossing populations. Linkage disequilibrium between neutral sites is generated by both balancing and local selection, especially in selfing populations, because of linkage disequilibrium between the neutral sites and the selectively maintained alleles. We discuss how these theoretical results can be related to data on genetic diversity within and between local populations of a species.
                Bookmark

                Author and article information

                Comments

                Comment on this article