17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Social deficits are common in many psychiatric disorders. However, due to inadequate tools for manipulating circuit activity in humans and unspecific paradigms for modeling social behaviors in rodents, our understanding of the molecular and circuit mechanisms mediating social behaviors remains relatively limited. Using human functional neuroimaging and rodent fiber photometry, we identified a mOFC-BLA projection that modulates social approach behavior and influences susceptibility to social anxiety. In humans and knock-in mice with a loss of function BDNF SNP (Val66Met), the functionality of this circuit was altered, resulting in social behavioral changes in human and mice. We further showed that the development of this circuit is disrupted in BDNF Met carriers due to insufficient BDNF bioavailability, specifically during a peri-adolescent timeframe. These findings define one mechanism by which social anxiety may stem from altered maturation of orbitofronto-amygdala projections and identify a developmental window in which BDNF-based interventions may have therapeutic potential.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Neocortical excitation/inhibition balance in information processing and social dysfunction.

          Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

            Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function

                Bookmark

                Author and article information

                Journal
                9607835
                20545
                Mol Psychiatry
                Mol. Psychiatry
                Molecular psychiatry
                1359-4184
                1476-5578
                2 November 2019
                16 April 2019
                16 October 2020
                : 10.1038/s41380-019-0422-4
                Affiliations
                [1 ]Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA
                [2 ]Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
                [3 ]Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
                [4 ]Department of Psychology, Yale University, New Haven, CT, USA
                Author notes

                Author contributions AL, BJC, and FSL conceived and designed the study. AL performed most of the experiments, analyzed the data, and wrote the manuscript. DJ and RY performed tract-tracing experiments. DVD recruited human subjects. BSH assisted with rodent social tasks and fiber photometry. RTH and CH assisted with animal handling, surgery, and husbandry. CL, BJC and FSL supervised the analysis of data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

                Article
                PMC6883137 PMC6883137 6883137 nihpa1057197
                10.1038/s41380-019-0422-4
                6883137
                30992540
                8fb02862-0873-4d37-8a89-d98f92b7b17a
                History
                Categories
                Article

                Comments

                Comment on this article