38
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of a glyphosate-containing herbicide on Escherichia coli and Salmonella ser. Typhimurium in an in vitro rumen simulation system

      research-article

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glyphosate ( N-(phosphonomethyl)glycine) is the most-used herbicide worldwide. Many studies in the past have shown that residues of the herbicide can be found in many cultivated plants, including those used as livestock feed. Sensitivity to glyphosate varies with bacteria, particularly those residing in the intestine, where microbiota is exposed to glyphosate residues. Therefore, less susceptible pathogenic isolates could have a distinct advantage compared to more sensitive commensal isolates, probably leading to dysbiosis.

          To determine whether the ruminal growth and survival of pathogenic Escherichia coli or Salmonella serovar Typhimurium are higher when glyphosate residues are present in the feed, an in vitro fermentation trial with a “Rumen Simulation System” (RUSITEC) and a glyphosate-containing commercial formulation was performed.

          Colony forming units of E. coli and Salmonella ser. Typhimurium decreased steadily in all fermenters, regardless of the herbicide application. Minimum inhibitory concentrations of the studied Salmonella and E. coli strains did not change, and antibiotic susceptibility varied only slightly but independent of the glyphosate application.

          Overall, application of the glyphosate-containing formulation in a worst-case concentration of 10 mg/L neither increased the abundance for the tested E. coli and Salmonella strain in the in vitro fermentation system, nor promoted resistance to glyphosate or antibiotics.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trends in glyphosate herbicide use in the United States and globally

          Background Accurate pesticide use data are essential when studying the environmental and public health impacts of pesticide use. Since the mid-1990s, significant changes have occurred in when and how glyphosate herbicides are applied, and there has been a dramatic increase in the total volume applied. Methods Data on glyphosate applications were collected from multiple sources and integrated into a dataset spanning agricultural, non-agricultural, and total glyphosate use from 1974–2014 in the United States, and from 1994–2014 globally. Results Since 1974 in the U.S., over 1.6 billion kilograms of glyphosate active ingredient have been applied, or 19 % of estimated global use of glyphosate (8.6 billion kilograms). Globally, glyphosate use has risen almost 15-fold since so-called “Roundup Ready,” genetically engineered glyphosate-tolerant crops were introduced in 1996. Two-thirds of the total volume of glyphosate applied in the U.S. from 1974 to 2014 has been sprayed in just the last 10 years. The corresponding share globally is 72 %. In 2014, farmers sprayed enough glyphosate to apply ~1.0 kg/ha (0.8 pound/acre) on every hectare of U.S.-cultivated cropland and nearly 0.53 kg/ha (0.47 pounds/acre) on all cropland worldwide. Conclusions Genetically engineered herbicide-tolerant crops now account for about 56 % of global glyphosate use. In the U.S., no pesticide has come remotely close to such intensive and widespread use. This is likely the case globally, but published global pesticide use data are sparse. Glyphosate will likely remain the most widely applied pesticide worldwide for years to come, and interest will grow in quantifying ecological and human health impacts. Accurate, accessible time-series data on glyphosate use will accelerate research progress. Electronic supplementary material The online version of this article (doi:10.1186/s12302-016-0070-0) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            THE SHIKIMATE PATHWAY.

            The shikimate pathway links metabolism of carbohydrates to biosynthesis of aromatic compounds. In a sequence of seven metabolic steps, phosphoenolpyruvate and erythrose 4-phosphate are converted to chorismate, the precursor of the aromatic amino acids and many aromatic secondary metabolites. All pathway intermediates can also be considered branch point compounds that may serve as substrates for other metabolic pathways. The shikimate pathway is found only in microorganisms and plants, never in animals. All enzymes of this pathway have been obtained in pure form from prokaryotic and eukaryotic sources and their respective DNAs have been characterized from several organisms. The cDNAs of higher plants encode proteins with amino terminal signal sequences for plastid import, suggesting that plastids are the exclusive locale for chorismate biosynthesis. In microorganisms, the shikimate pathway is regulated by feedback inhibition and by repression of the first enzyme. In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes. Several of the pathway enzymes occur in isoenzymic forms whose expression varies with changing environmental conditions and, within the plant, from organ to organ. The penultimate enzyme of the pathway is the sole target for the herbicide glyphosate. Glyphosate-tolerant transgenic plants are at the core of novel weed control systems for several crop plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans.

              Reviews on the safety of glyphosate and Roundup herbicide that have been conducted by several regulatory agencies and scientific institutions worldwide have concluded that there is no indication of any human health concern. Nevertheless, questions regarding their safety are periodically raised. This review was undertaken to produce a current and comprehensive safety evaluation and risk assessment for humans. It includes assessments of glyphosate, its major breakdown product [aminomethylphosphonic acid (AMPA)], its Roundup formulations, and the predominant surfactant [polyethoxylated tallow amine (POEA)] used in Roundup formulations worldwide. The studies evaluated in this review included those performed for regulatory purposes as well as published research reports. The oral absorption of glyphosate and AMPA is low, and both materials are eliminated essentially unmetabolized. Dermal penetration studies with Roundup showed very low absorption. Experimental evidence has shown that neither glyphosate nor AMPA bioaccumulates in any animal tissue. No significant toxicity occurred in acute, subchronic, and chronic studies. Direct ocular exposure to the concentrated Roundup formulation can result in transient irritation, while normal spray dilutions cause, at most, only minimal effects. The genotoxicity data for glyphosate and Roundup were assessed using a weight-of-evidence approach and standard evaluation criteria. There was no convincing evidence for direct DNA damage in vitro or in vivo, and it was concluded that Roundup and its components do not pose a risk for the production of heritable/somatic mutations in humans. Multiple lifetime feeding studies have failed to demonstrate any tumorigenic potential for glyphosate. Accordingly, it was concluded that glyphosate is noncarcinogenic. Glyphosate, AMPA, and POEA were not teratogenic or developmentally toxic. There were no effects on fertility or reproductive parameters in two multigeneration reproduction studies with glyphosate. Likewise there were no adverse effects in reproductive tissues from animals treated with glyphosate, AMPA, or POEA in chronic and/or subchronic studies. Results from standard studies with these materials also failed to show any effects indicative of endocrine modulation. Therefore, it is concluded that the use of Roundup herbicide does not result in adverse effects on development, reproduction, or endocrine systems in humans and other mammals. For purposes of risk assessment, no-observed-adverse-effect levels (NOAELs) were identified for all subchronic, chronic, developmental, and reproduction studies with glyphosate, AMPA, and POEA. Margins-of-exposure for chronic risk were calculated for each compound by dividing the lowest applicable NOAEL by worst-case estimates of chronic exposure. Acute risks were assessed by comparison of oral LD50 values to estimated maximum acute human exposure. It was concluded that, under present and expected conditions of use, Roundup herbicide does not pose a health risk to humans.
                Bookmark

                Author and article information

                Journal
                1886
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó
                2062-8633
                September 2019
                : 9
                : 3
                : 94-99
                Affiliations
                [1 ]Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin , Berlin, Germany
                [2 ]Institute for Physiology and Cell Biology, University of Veterinary Medicine , Hannover, Germany
                Author notes
                [*]

                Author for correspondence: Institute for Animal Hygiene and Environmental Health, Robert-von-Ostertag-St. 7–13, 14163, Berlin, Germany; E-mail: Katrin.Bote@ 123456fu-berlin.de and E-mail: tierhygiene@ 123456vetmed.fu-berlin.de ; Phone: +49 30 838 51845; Fax: +49 30 838 451863.

                Article
                10.1556/1886.2019.00010
                ef0117ea-a03c-4f83-8117-317fdbcc11c0
                © 2019 The Author(s)

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes - if any - are indicated.

                History
                : 13 May 2019
                : 28 May 2019
                : 27 June 2019
                Page count
                Pages: 6
                Categories
                Original Research Paper

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                roundup,glyphosate,glyphosate resistance,RUSITEC,microbial community,rumen simulation system,fermentation

                Comments

                Comment on this article