16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamic passive dosing for studying the biotransformation of hydrophobic organic chemicals: microbial degradation as an example.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biotransformation plays a key role in hydrophobic organic compound (HOC) fate, and understanding kinetics as a function of (bio)availability is critical for elucidating persistence, accumulation, and toxicity. Biotransformation mainly occurs in an aqueous environment, posing technical challenges for producing kinetic data because of low HOC solubilities and sorptive losses. To overcome these, a new experimental approach based on passive dosing is presented. This avoids using cosolvent for introducing the HOC substrate, buffers substrate depletion so biotransformation is measured within a narrow and defined dissolved concentration range, and enables high compound turnover even at low concentrations to simplify end point measurement. As a case study, the biodegradation kinetics of two model HOCs by the bacterium Sphingomonas paucimobilis EPA505 were measured at defined dissolved concentrations ranging over 4 orders of magnitude, from 0.017 to 658 μg L(-1) for phenanthrene and from 0.006 to 90.0 μg L(-1) for fluoranthene. Both compounds had similar mineralization fluxes, and these increased by 2 orders of magnitude with increasing dissolved concentrations. First-order mineralization rate constants were also similar for both PAHs, but decreased by around 2 orders of magnitude with increasing dissolved concentrations. Dynamic passive dosing is a useful tool for measuring biotransformation kinetics at realistically low and defined dissolved HOC concentrations.

          Related collections

          Author and article information

          Journal
          Environ. Sci. Technol.
          Environmental science & technology
          American Chemical Society (ACS)
          1520-5851
          0013-936X
          May 01 2012
          : 46
          : 9
          Affiliations
          [1 ] Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark. kecsmith@gmail.com
          Article
          10.1021/es204050u
          22458885
          5e305fbf-76bd-4af5-840a-911fa96267a8
          History

          Comments

          Comment on this article