82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review.

      British Journal of Sports Medicine
      Fatigue, Overtraining, Questionnaire, Recovery, Well-being

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monitoring athlete well-being is essential to guide training and to detect any progression towards negative health outcomes and associated poor performance. Objective (performance, physiological, biochemical) and subjective measures are all options for athlete monitoring.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress?

          Overtraining syndrome (OTS) is a condition wherein an athlete is training excessively, yet performance deteriorates. This is usually accompanied by mood/behavior changes and a variety of biochemical and physiological alterations. Presently, there is no global hypothesis to account for OTS. The present paper will attempt to provide a unifying paradigm that will integrate previous research under the rubric of the cytokine hypothesis of overtraining. It is argued that high volume/intensity training, with insufficient rest, will produce muscle and/or skeletal and/or joint trauma. Circulating monocytes are then activated by injury-related cytokines, and in turn produce large quantities of proinflammatory IL-1beta, and/or IL-6, and/or TNF-alpha, producing systemic inflammation. Elevated circulating cytokines then co-ordinate the whole-body response by: a) communicating with the CNS and inducing a set of behaviors referred to as "sickness" behavior, which involves mood and behavior changes that support resolution of systemic inflammation: b) adjusting liver function, to support the up-regulation of gluconeogenesis, as well as de novo synthesis of acute phase proteins, and a concomitant hypercatabolic state; and c) impacting on immune function. Theoretically, OTS is viewed as the third stage of Selye's general adaptation syndrome, with the focus being on recovery/survival, and not adaptation, and is deemed to be "protective," occurring in response to excessive physical/physiological stress. Recommendations are made for potential markers of OTS, based on a systemic inflammatory condition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Psychological monitoring of overtraining and staleness.

            It is widely agreed that overtraining should be employed in order to achieve peak performance but it is also recognised that overtraining can actually produce decrements in performance. The challenge appears to be one of monitoring stress indicators in the athlete in order to titrate the training stimulus and prevent the onset of staleness. The present paper summarises a ten-year research effort in which the mood states of competitive swimmers have been monitored at intervals ranging from 2-4 weeks during individual seasons for the period 1975-1986. The training cycle has always involved the indoor season which extends from September to March and the athletes who served as subjects were 200 female and 200 male competitive swimmers. The results indicate that mood state disturbances increased in a dose-response manner as the training stimulus increased and that these mood disturbances fell to baseline levels with reduction of the training load. Whilst these results have been obtained in a realistic setting devoid of experimental manipulation, it is apparent that monitoring of mood state provides a potential method of preventing staleness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood hormones as markers of training stress and overtraining.

              An imbalance between the overall strain experienced during exercise training and the athlete's tolerance of such effort may induce overreaching or overtraining syndrome. Overtraining syndrome is characterised by diminished sport-specific physical performance, accelerated fatiguability and subjective symptoms of stress. Overtraining is feared by athletes yet there is a lack of objective parameters suitable for its diagnosis and prevention. In addition to the determination of substrates (e.g. lactate, ammonia and urea) and enzymes (e.g. creatine kinase), the possibilities for monitoring of training by measuring hormonal levels in blood are currently being investigated. Endogenous hormones are essential for physiological reactions and adaptations during physical work and influence the recovery phase after exercise by modulating anabolic and catabolic processes. Testosterone and cortisol are playing a significant role in metabolism of protein as well as carbohydrate metabolism. Both are competitive agonists at the receptor level of muscular cells. The testosterone/cortisol ratio is used as an indication of the anabolic/catabolic balance. This ratio decreases in relation to the intensity and duration of physical exercise, as well as during periods of intense training or repetitive competition, and can be reversed by regenerative measures. Correlations have been noted with the training-induced changes of strength. However, it seems more likely that the testosterone/cortisol ratio indicates the actual physiological strain in training, rather than overtraining syndrome. The sympatho-adrenergic system might be involved in the pathogenesis of overtraining. Overtraining appears as a disturbed autonomic regulation, which in its parasympathicotonic form shows a diminished maximal secretion of catecholamines, combined with an impaired full mobilisation of anaerobic lactic reserves. This is supposed to lead to decreased maximal blood lactate levels and maximal performance. Free plasma adrenaline (epinephrine) and noradrenaline (norepinephrine) may provide additional information for the monitoring of endurance training. While prolonged aerobic exercise conducted at intensities below the individual anaerobic threshold lead to a moderate rise of sympathetic activity, workloads exceeding this threshold are characterised by a disproportionate increase in the levels of catecholamines. In addition, psychological stress during competitive events is characterised by a higher catecholamines to lactate ratio in comparison with training exercise sessions. Thus, the frequency of training sessions with higher anaerobic lactic demands or of competition, should be carefully limited in order to prevent overtraining syndrome. In the state of overtraining syndrome and overreaching, respectively, an intraindividually decreased maximum rise of pituitary hormones (corticotrophin, growth hormone), cortisol and insulin has been found after a standardised exhaustive exercise test performed with an intensity of 10% above the individual anaerobic threshold.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                26423706
                10.1136/bjsports-2015-094758

                Fatigue,Overtraining,Questionnaire,Recovery,Well-being
                Fatigue, Overtraining, Questionnaire, Recovery, Well-being

                Comments

                Comment on this article