10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease.

      American journal of nephrology
      Acute-Phase Proteins, urine, Adult, Case-Control Studies, Cysts, physiopathology, Female, Humans, Kidney Function Tests, Kidney Tubules, metabolism, Lipocalins, Male, Middle Aged, Polycystic Kidney, Autosomal Dominant, blood, Proto-Oncogene Proteins

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is known that many tubular proteins are involved in the pathogenesis of autosomal-dominant polycystic kidney disease (ADPKD), which causes 8-10% of the cases of end-stage renal disease (ESRD) worldwide. Neutrophil gelatinase-associated lipocalin (NGAL) is a protein expressed on tubular cells of which the production is markedly increased in response to harmful stimuli such as ischemia or toxicity. In the present study, serum and urinary NGAL levels were evaluated in 26 ADPKD subjects. Both levels were significantly higher in patients than in controls (sNGAL 174 +/- 52 vs. 50 +/- 27 ng/ml, p < 0.05; uNGAL 119 +/- 42 vs. 7 +/- 6 ng/ml, p < 0.005) and a close correlation was also found between these parameters and the residual renal function (sNGAL/GFR: r = -0.8, p = 0.006; sNGAL/Creatinine: r = 0.9, p = 0.007; uNGAL/GFR: r = -0.49, p < 0.05; uNGAL/Creatinine: r = 0.84, p < 0.001). Patients were further divided into two groups according to the cystic development assessed with echotomography; subjects with higher cystic growth (HCG) presented higher sNGAL and uNGAL levels with respect to others (sNGAL: 242 +/- 89 vs. 88 +/- 34 ng/ml, p < 0.05; uNGAL: 158 +/- 45 vs. 73 +/- 27 ng/ml, p < 0.05). The strict correlation between NGAL levels and residual renal function is perfectly in accord with recent studies on patients with other ESRD-associated diseases. We can hypothesize that tubular cells produce big quantities of NGAL as a consequence of increased apoptosis following chronic damage or as a compensatory response, similar to that observed in acute stress conditions (ischemia, toxicity ...). Finally, our last finding that patients with HCG showed higher levels of NGAL suggests that this protein could be also involved in the cyst growth process, as previously reported about epithelial and tumoral expansion. Copyright 2007 S. Karger AG, Basel.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL.

          Detection of matrix metalloproteinase (MMP) activities in the urine from patients with a variety of cancers has been closely correlated to disease status. Among these activities, the presence of a group of high molecular weight (HMW) MMPs independently serves as a multivariate predictor of the metastatic phenotype (). The identity of these HMW MMP activities has remained unknown despite their novelty and their potentially important applications in non-invasive cancer diagnosis and/or prognosis. Here, we report the identification of one of these HMW urinary MMPs of approximately 125-kDa as being a complex of gelatinase B (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL). Multiple biochemical approaches verified this identity. Analysis using substrate gel electrophoresis demonstrated that the 125-kDa urinary MMP activity co-migrates with purified human neutrophil MMP-9 x NGAL complex. The 125-kDa urinary MMP-9 x NGAL complex was recognized by a purified antibody against human NGAL as well as by a monospecific anti-human MMP-9 antibody. Furthermore, these same two antibodies were independently capable of specifically immunoprecipitating the 125-kDa urinary MMP activity in a dose-dependent manner. In addition, the complex of MMP-9 x NGAL could be reconstituted in vitro by mixing MMP-9 and NGAL in gelatinase buffers with pH values in the range of urine and in normal urine as well. Finally, the biochemical consequences of the NGAL and MMP-9 interaction were investigated both in vitro using recombinant human NGAL and MMP-9 and in cell culture by overexpressing NGAL in human breast carcinoma cells. Our data demonstrate that NGAL is capable of protecting MMP-9 from degradation in a dose-dependent manner and thereby preserving MMP-9 enzymatic activity. In summary, this study identifies the 125-kDa urinary gelatinase as being a complex of MMP-9 and NGAL and provides evidence that NGAL modulates MMP-9 activity by protecting it from degradation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury.

            Nephrotoxicity is a common side effect of therapeutic interventions, environmental insults, and exposure to toxicants in the workplace. Although biomarkers for nephrotoxicity are available, they often lack sensitivity and are not specific as indicators of epithelial cell injury. Kidney injury molecule-1 (Kim-1) is a type 1 membrane protein with extracellular immunoglobulin and mucin domains. The mRNA and protein for Kim-1 are expressed at very low levels in normal rodent kidney, but expression increases dramatically after injury in proximal tubule epithelial cells in postischemic rodent kidney and in humans during ischemic acute renal failure. To evaluate the utility of Kim-1 as a biomarker for other types of renal injury, we analyzed tissue and urinary expression in response to three different types of nephrotoxicants in the rat: S-(1,1,2,2-tetrafluoroethyl)-l-cysteine (TFEC), folic acid, and cisplatin. Marked increases in Kim-1 expression were confirmed by immunoblotting in all three models. The protein was shown to be localized to the proximal tubule epithelial cell by immunofluorescence. Furthermore, Kim-1 protein was detected in urine of toxicant-treated rats. The temporal pattern of expression in response to TFEC is similar to the Kim-1 expression pattern in the postischemic kidney. In folic acid-treated kidneys, Kim-1 is clearly localized to the apical brush border of the well-differentiated proximal tubular epithelial cells. After folic acid treatment, expression of Kim-1 is present in the urine despite no significant increase in serum creatinine. Cisplatin treatment results in early detection of urinary Kim-1 protein and diffuse Kim-1 expression in S3 cells of the proximal tubule. Kim-1 can be detected in the tissue and urine on days 1 and 2 after cisplatin administration, occurring before an increase in serum creatinine. The upregulation of expression of Kim-1 and its presence in the urine in response to exposure to various types of nephrotoxicants suggest that this protein may serve as a general biomarker for tubular injury and repair processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin.

              Acute renal failure secondary to ischemic injury remains a common problem, with limited and unsatisfactory therapeutic options. Neutrophil gelatinase-associated lipocalin (NGAL) was recently shown to be one of the maximally induced genes early in the postischemic kidney. In this study, the role of NGAL in ischemic renal injury was explored. Intravenous administration of purified recombinant NGAL in mice resulted in a rapid uptake of the protein predominantly by proximal tubule cells. In an established murine model of renal ischemia-reperfusion injury, intravenous NGAL administered before, during, or after ischemia resulted in marked amelioration of the morphologic and functional consequences, as evidenced by a significant decrease in the histopathologic damage to tubules and in serum creatinine measurements. NGAL-treated animals also displayed a reduction in the number of apoptotic tubule cells and an increase in proliferating proximal tubule cells after ischemic injury. The results indicate that NGAL may represent a novel therapeutic intervention in ischemic acute renal failure, based at least in part on its ability to tilt the balance of tubule cell fate toward survival.
                Bookmark

                Author and article information

                Comments

                Comment on this article