37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Habitual coffee consumption and cognitive function: a Mendelian randomization meta-analysis in up to 415,530 participants

      Scientific Reports
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Illustrating bias due to conditioning on a collider.

          That conditioning on a common effect of exposure and outcome may cause selection, or collider-stratification, bias is not intuitive. We provide two hypothetical examples to convey concepts underlying bias due to conditioning on a collider. In the first example, fever is a common effect of influenza and consumption of a tainted egg-salad sandwich. In the second example, case-status is a common effect of a genotype and an environmental factor. In both examples, conditioning on the common effect imparts an association between two otherwise independent variables; we call this selection bias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-analysis

            OBJECTIVE Previous meta-analyses identified an inverse association of coffee consumption with the risk of type 2 diabetes. However, an updated meta-analysis is needed because new studies comparing the trends of association for caffeinated and decaffeinated coffee have since been published. RESEARCH DESIGN AND METHODS PubMed and Embase were searched for cohort or nested case-control studies that assessed the relationship of coffee consumption and risk of type 2 diabetes from 1966 to February 2013. A restricted cubic spline random-effects model was used. RESULTS Twenty-eight prospective studies were included in the analysis, with 1,109,272 study participants and 45,335 cases of type 2 diabetes. The follow-up duration ranged from 10 months to 20 years. Compared with no or rare coffee consumption, the relative risk (RR; 95% CI) for diabetes was 0.92 (0.90–0.94), 0.85 (0.82–0.88), 0.79 (0.75–0.83), 0.75 (0.71–0.80), 0.71 (0.65–0.76), and 0.67 (0.61–0.74) for 1–6 cups/day, respectively. The RR of diabetes for a 1 cup/day increase was 0.91 (0.89–0.94) for caffeinated coffee consumption and 0.94 (0.91–0.98) for decaffeinated coffee consumption (P for difference = 0.17). CONCLUSIONS Coffee consumption was inversely associated with the risk of type 2 diabetes in a dose-response manner. Both caffeinated and decaffeinated coffee was associated with reduced diabetes risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coffee, CYP1A2 genotype, and risk of myocardial infarction.

              The association between coffee intake and risk of myocardial infarction (MI) remains controversial. Coffee is a major source of caffeine, which is metabolized by the polymorphic cytochrome P450 1A2 (CYP1A2) enzyme. Individuals who are homozygous for the CYP1A2*1A allele are "rapid" caffeine metabolizers, whereas carriers of the variant CYP1A2*1F are "slow" caffeine metabolizers. To determine whether CYP1A2 genotype modifies the association between coffee consumption and risk of acute nonfatal MI. Cases (n = 2014) with a first acute nonfatal MI and population-based controls (n = 2014) living in Costa Rica between 1994 and 2004, matched for age, sex, and area of residence, were genotyped by restriction fragment-length polymorphism polymerase chain reaction. A food frequency questionnaire was used to assess the intake of caffeinated coffee. Relative risk of nonfatal MI associated with coffee intake, calculated using unconditional logistic regression. Fifty-five percent of cases (n = 1114) and 54% of controls (n = 1082) were carriers of the slow *1F allele. For carriers of the slow *1F allele, the multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of nonfatal MI associated with consuming less than 1, 1, 2 to 3, and 4 or more cups of coffee per day were 1.00 (reference), 0.99 (0.69-1.44), 1.36 (1.01-1.83), and 1.64 (1.14-2.34), respectively. Corresponding ORs (95% CIs) for individuals with the rapid *1A/*1A genotype were 1.00, 0.75 (0.51-1.12), 0.78 (0.56-1.09), and 0.99 (0.66-1.48) (P = .04 for gene x coffee interaction). For individuals younger than the median age of 59 years, the ORs (95% CIs) associated with consuming less than 1, 1, 2 to 3, or 4 or more cups of coffee per day were 1.00, 1.24 (0.71-2.18), 1.67 (1.08-2.60), and 2.33 (1.39-3.89), respectively, among carriers of the *1F allele. The corresponding ORs (95% CIs) for those with the *1A/*1A genotype were 1.00, 0.48 (0.26-0.87), 0.57 (0.35-0.95), and 0.83 (0.46-1.51). Intake of coffee was associated with an increased risk of nonfatal MI only among individuals with slow caffeine metabolism, suggesting that caffeine plays a role in this association.
                Bookmark

                Author and article information

                Journal
                10.1038/s41598-018-25919-2
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article