172
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Consensus guidelines for the use and interpretation of angiogenesis assays

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,   , , , , , , , , , , , , , , , , , , ,   , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Angiogenesis
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.

          Related collections

          Most cited references579

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innovation: Metabolomics: the apogee of the omics trilogy.

            Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping our understanding of cell biology, physiology and medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs.

              Transgenesis is an important tool for assessing gene function. In zebrafish, transgenesis has suffered from three problems: the labor of building complex expression constructs using conventional subcloning; low transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent germline incorporation; and difficulty in identifying germline integrations unless using a fluorescent marker transgene. The Tol2kit system uses site-specific recombination-based cloning (multisite Gateway technology) to allow quick, modular assembly of [promoter]-[coding sequence]-[3' tag] constructs in a Tol2 transposon backbone. It includes a destination vector with a cmlc2:EGFP (enhanced green fluorescent protein) transgenesis marker and a variety of widely useful entry clones, including hsp70 and beta-actin promoters; cytoplasmic, nuclear, and membrane-localized fluorescent proteins; and internal ribosome entry sequence-driven EGFP cassettes for bicistronic expression. The Tol2kit greatly facilitates zebrafish transgenesis, simplifies the sharing of clones, and enables large-scale projects testing the functions of libraries of regulatory or coding sequences. Copyright 2007 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Angiogenesis
                Angiogenesis
                Springer Science and Business Media LLC
                0969-6970
                1573-7209
                August 2018
                May 15 2018
                August 2018
                : 21
                : 3
                : 425-532
                Article
                10.1007/s10456-018-9613-x
                a45d8454-4d3e-46d5-bb4f-e253bd4eb4a9
                © 2018

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article