22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification of a New Function of Cardiovascular Disease Drug 3-Morpholinosydnonimine Hydrochloride as an Amyloid-β Aggregation Inhibitor

      ACS Omega
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Structural conversion of neurotoxic amyloid-β(1–42) oligomers to fibrils

          The Aβ42 peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimer's disease. We show that low temperature and low salt can stabilize disc-shaped oligomers (pentamers) that are significantly more toxic to murine cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the β-sheet structure characteristic of fibrils. Rather, the oligomers are composed of loosely aggregated strands whose C-terminus is protected from solvent exchange and which have a turn conformation placing Phe19 in contact with Leu34. On the basis of NMR spectroscopy, we show that the structural conversion of Aβ42 oligomers to fibrils involves the association of these loosely aggregated strands into β-sheets whose individual β-strands polymerize in a parallel, in-register orientation and are staggered at an inter-monomer contact between Gln15 and Gly37.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism.

            The formation of well-ordered fibrillar protein deposits is common to a large group of amyloid-associated disorders. This group consists of several major human diseases such as Alzheimer's disease, Parkinson's disease, prion diseases, and type II diabetes. Currently, there is no approved therapeutic agent directed towards the formation of fibrillar assemblies, which have been recently shown to have a key role in the cytotoxic nature of amyloidogenic proteins. One important approach in the development of therapeutic agents is the use of small molecules that specifically and efficiently inhibit the aggregation process. Several small polyphenol molecules have been demonstrated to remarkably inhibit the formation of fibrillar assemblies in vitro and their associated cytotoxicity. Yet, the inhibition mechanism was mostly attributed to the antioxidative properties of these polyphenol compounds. Based on several observations demonstrating that polyphenols are capable of inhibiting amyloid fibril formation in vitro, regardless of oxidative conditions, and in view of their structural similarities we suggest an additional mechanism of action. This mechanism is assuming structural constraints and specific aromatic interactions, which direct polyphenol inhibitors to the amyloidogenic core. This proposed mechanism is highly relevant for future de novo inhibitors' design as therapeutic agents for the treatment of amyloid-associated diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure-neurotoxicity relationships of amyloid beta-protein oligomers.

              Amyloid beta-protein (Abeta) oligomers may be the proximate neurotoxins in Alzheimer's disease (AD). "Oligomer" is an ill-defined term because many kinds have been reported and they often exist in rapid equilibrium with monomers and higher-order assemblies. We report here results of studies in which specific oligomers have been stabilized structurally, fractionated in pure form, and then studied by using a combination of CD spectroscopy, Thioflavin T fluorescence, EM, atomic force microscopy (AFM), and neurotoxicity assays. Abeta monomers were largely unstructured, but oligomers exhibited order-dependent increases in beta-sheet content. EM and AFM data suggest that dimerization and subsequent monomer addition are processes in which significant and asymmetric monomer conformational changes occur. Oligomer secondary structure and order correlated directly with fibril nucleation activity. Neurotoxic activity increased disproportionately (order dependence >1) with oligomer order. The structure-activity correlations reported here significantly extend our understanding of the conformational dynamics, structure, and relative toxicity of pure Abeta oligomers of specific order.
                Bookmark

                Author and article information

                Journal
                10.1021/acsomega.6b00397
                http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

                Comments

                Comment on this article