33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EPA’s DSSTox Database: History of development of a curated chemistry resource supporting computational toxicology research

      ,   , ,
      Computational Toxicology
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The US Environmental Protection Agency’s (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database, launched publicly in 2004, currently exceeds 875 K substances spanning hundreds of lists of interest to EPA and environmental researchers. From its inception, DSSTox has focused curation efforts on resolving chemical identifier errors and conflicts in the public domain towards the goal of assigning accurate chemical structures to data and lists of importance to the environmental research and regulatory community. Accurate structure-data associations, in turn, are necessary inputs to structure-based predictive models supporting hazard and risk assessments. In 2014, the legacy, manually curated DSSTox_V1 content was migrated to a MySQL data model, with modern cheminformatics tools supporting both manual and automated curation processes to increase efficiencies. This was followed by sequential auto-loads of filtered portions of three public datasets: EPA’s Substance Registry Services (SRS), the National Library of Medicine’s ChemID, and PubChem. This process was constrained by a key requirement of uniquely mapped identifiers (i.e., CAS RN, name and structure) for each substance, rejecting content where any two identifiers were conflicted either within or across datasets. This rejected content highlighted the degree of conflicting, inaccurate substance-structure ID mappings in the public domain, ranging from 12% (within EPA SRS) to 49% (across ChemID and PubChem). Substances successfully added to DSSTox from each auto-load were assigned to one of five qc_levels, conveying curator confidence in each dataset. This process enabled a significant expansion of DSSTox content to provide better coverage of the chemical landscape of interest to environmental scientists, while retaining focus on the accuracy of substance-structure-data associations. Currently, DSSTox serves as the core foundation of EPA’s CompTox Chemicals Dashboard [https://comptox.epa.gov/dashboard], which provides public access to DSSTox content in support of a broad range of modeling and research activities within EPA and, increasingly, across the field of computational toxicology.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          ZINC--a free database of commercially available compounds for virtual screening.

          A critical barrier to entry into structure-based virtual screening is the lack of a suitable, easy to access database of purchasable compounds. We have therefore prepared a library of 727,842 molecules, each with 3D structure, using catalogs of compounds from vendors (the size of this library continues to grow). The molecules have been assigned biologically relevant protonation states and are annotated with properties such as molecular weight, calculated LogP, and number of rotatable bonds. Each molecule in the library contains vendor and purchasing information and is ready for docking using a number of popular docking programs. Within certain limits, the molecules are prepared in multiple protonation states and multiple tautomeric forms. In one format, multiple conformations are available for the molecules. This database is available for free download (http://zinc.docking.org) in several common file formats including SMILES, mol2, 3D SDF, and DOCK flexibase format. A Web-based query tool incorporating a molecular drawing interface enables the database to be searched and browsed and subsets to be created. Users can process their own molecules by uploading them to a server. Our hope is that this database will bring virtual screening libraries to a wide community of structural biologists and medicinal chemists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The CompTox Chemistry Dashboard: a community data resource for environmental chemistry

            Despite an abundance of online databases providing access to chemical data, there is increasing demand for high-quality, structure-curated, open data to meet the various needs of the environmental sciences and computational toxicology communities. The U.S. Environmental Protection Agency’s (EPA) web-based CompTox Chemistry Dashboard is addressing these needs by integrating diverse types of relevant domain data through a cheminformatics layer, built upon a database of curated substances linked to chemical structures. These data include physicochemical, environmental fate and transport, exposure, usage, in vivo toxicity, and in vitro bioassay data, surfaced through an integration hub with link-outs to additional EPA data and public domain online resources. Batch searching allows for direct chemical identifier (ID) mapping and downloading of multiple data streams in several different formats. This facilitates fast access to available structure, property, toxicity, and bioassay data for collections of chemicals (hundreds to thousands at a time). Advanced search capabilities are available to support, for example, non-targeted analysis and identification of chemicals using mass spectrometry. The contents of the chemistry database, presently containing ~ 760,000 substances, are available as public domain data for download. The chemistry content underpinning the Dashboard has been aggregated over the past 15 years by both manual and auto-curation techniques within EPA’s DSSTox project. DSSTox chemical content is subject to strict quality controls to enforce consistency among chemical substance-structure identifiers, as well as list curation review to ensure accurate linkages of DSSTox substances to chemical lists and associated data. The Dashboard, publicly launched in April 2016, has expanded considerably in content and user traffic over the past year. It is continuously evolving with the growth of DSSTox into high-interest or data-rich domains of interest to EPA, such as chemicals on the Toxic Substances Control Act listing, while providing the user community with a flexible and dynamic web-based platform for integration, processing, visualization and delivery of data and resources. The Dashboard provides support for a broad array of research and regulatory programs across the worldwide community of toxicologists and environmental scientists. Electronic supplementary material The online version of this article (10.1186/s13321-017-0247-6) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research.

                Bookmark

                Author and article information

                Journal
                Computational Toxicology
                Computational Toxicology
                Elsevier BV
                24681113
                June 2019
                June 2019
                : 100096
                Article
                10.1016/j.comtox.2019.100096
                fbaff820-0ac4-476d-b8f9-c4bda824bbd3
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article