41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      From carbohydrate leads to glycomimetic drugs.

      Nature reviews. Drug discovery
      Animals, Biomimetic Materials, chemistry, pharmacology, Biomimetics, methods, Carbohydrates, Drug Delivery Systems, Drug Design, Humans, Lectins, metabolism, Protein Binding

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbohydrates are the most abundant natural products. Besides their role in metabolism and as structural building blocks, they are fundamental constituents of every cell surface, where they are involved in vital cellular recognition processes. Carbohydrates are a relatively untapped source of new drugs and therefore offer exciting new therapeutic opportunities. Advances in the functional understanding of carbohydrate-protein interactions have enabled the development of a new class of small-molecule drugs, known as glycomimetics. These compounds mimic the bioactive function of carbohydrates and address the drawbacks of carbohydrate leads, namely their low activity and insufficient drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the lectin families) and consider ways to overcome the challenges of developing this unique class of novel therapeutics.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: not found
          • Article: not found

          Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses.

            Contact between dendritic cells (DC) and resting T cells is essential to initiate a primary immune response. Here, we demonstrate that ICAM-3 expressed by resting T cells is important in this first contact with DC. We discovered that instead of the common ICAM-3 receptors LFA-1 and alphaDbeta2, a novel DC-specific C-type lectin, DC-SIGN, binds ICAM-3 with high affinity. DC-SIGN, which is abundantly expressed by DC both in vitro and in vivo, mediates transient adhesion with T cells. Since antibodies against DC-SIGN inhibit DC-induced proliferation of resting T cells, our findings predict that DC-SIGN enables T cell receptor engagement by stabilization of the DC-T cell contact zone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prodrugs: design and clinical applications.

              Prodrugs are bioreversible derivatives of drug molecules that undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then exert the desired pharmacological effect. In both drug discovery and development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents. About 5-7% of drugs approved worldwide can be classified as prodrugs, and the implementation of a prodrug approach in the early stages of drug discovery is a growing trend. To illustrate the applicability of the prodrug strategy, this article describes the most common functional groups that are amenable to prodrug design, and highlights examples of prodrugs that are either launched or are undergoing human trials.
                Bookmark

                Author and article information

                Comments

                Comment on this article