14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer.

      American journal of nephrology
      Adenocarcinoma, Clear Cell, metabolism, physiopathology, Clinical Trials as Topic, DNA-Binding Proteins, physiology, Genes, Tumor Suppressor, Humans, Hypoxia-Inducible Factor 1, Hypoxia-Inducible Factor 1, alpha Subunit, Kidney Neoplasms, Nuclear Proteins, Transcription Factors, Tumor Suppressor Proteins, Ubiquitin-Protein Ligases, Von Hippel-Lindau Tumor Suppressor Protein, von Hippel-Lindau Disease

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of hereditary von Hippel-Lindau (VHL) disease and the majority of sporadic kidney cancers are due to the functional inactivation of the VHL gene. The product of the VHL gene, pVHL, in association with elongins B and C, cullin 2, and Rbx1 form an E3 ubiquitin-ligase complex VEC that targets the alpha subunits of hypoxia-inducible factor (HIF) for ubiquitination. Ubiquitin-tagged HIF-alpha proteins are subsequently degraded by the common 26S proteasome. pVHL functions as the substrate-docking interface that specifically recognizes prolyl-hydroxylated HIF-alpha. This hydroxylation occurs only in the presence of oxygen or normoxia. Thus, under hypoxia, HIF-alpha subunits are no longer subjected to degradation and are thereby able to dimerize with the common and constitutively stable beta subunits. The heterodimeric HIFs upregulate a myriad of hypoxia-inducible genes, triggering our physiologic response to hypoxia. Inappropriate accumulations of HIF-alpha in VHL disease are believed to contribute to the pathogenesis via the upregulation of several of these HIF target genes. Our current molecular understanding of the roles of HIF and pVHL in the development of VHL-associated clear-cell renal cell carcinoma (CC-RCC) is the focus of this review. Copyright 2004 S. Karger AG, Basel

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations of the VHL tumour suppressor gene in renal carcinoma.

          Multiple, bilateral renal carcinomas are a frequent occurrence in von Hippel-Lindau (VHL) disease. To elucidate the aetiological role of the VHL gene in human kidney tumorigenesis, localized and advanced tumours from 110 patients with sporadic renal carcinoma were analysed for VHL mutations and loss of heterozygosity (LOH). VHL mutations were identified in 57% of clear cell renal carcinomas analysed and LOH was observed in 98% of those samples. Moreover, VHL was mutated and lost in a renal tumour from a patient with familial renal carcinoma carrying the constitutional translocation, t(3;8)(p14;q24). The identification of VHL mutations in a majority of localized and advanced sporadic renal carcinomas and in a second form of hereditary renal carcinoma indicates that the VHL gene plays a critical part in the origin of this malignancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.

            von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome that is characterized by the development of multiple vascular tumors and is caused by inactivation of the von Hippel-Lindau protein (pVHL). Here we show that pVHL, through its beta-domain, binds directly to hypoxia-inducible factor (HIF), thereby targeting HIF for ubiquitination in an alpha-domain-dependent manner. This is the first function to be ascribed to the pVHL beta-domain. Furthermore, we provide the first direct evidence that pVHL has a function analogous to that of an F-box protein, namely, to recruit substrates to a ubiquitination machine. These results strengthen the link between overaccumulation of HIF and development of VHL disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              von Hippel-Lindau disease.

              von Hippel-Lindau disease is a heritable multisystem cancer syndrome that is associated with a germline mutation of the VHL tumour suppressor gene on the short arm of chromosome 3. This disorder is not rare (about one in 36000 livebirths) and is inherited as a highly penetrant autosomal dominant trait (ie, with a high individual risk of disease). Affected individuals are at risk of developing various benign and malignant tumours of the central nervous system, kidneys, adrenal glands, pancreas, and reproductive adnexal organs. Because of the complexities associated with management of the various types of tumours in this disease, treatment is multidisciplinary. We present an overview of the clinical aspects, management, and treatment options for von Hippel-Lindau disease.
                Bookmark

                Author and article information

                Comments

                Comment on this article