31
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo.

      Drug Design, Development and Therapy
      As4S4, E-cadherin, MMPs, VEGF, realgar, xenograft

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously showed that arsenic sulfide (As4S4) induced cell cycle arrest and apoptosis in several human solid tumor cell lines, including those of gastric cancer. In this study, we investigated the effect of As4S4 on the migration and invasion of gastric cancer cells both in vitro and in vivo.

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How matrix metalloproteinases regulate cell behavior.

            The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New signals from the invasive front.

              Approximately 90% of all cancer deaths arise from the metastatic spread of primary tumours. Of all the processes involved in carcinogenesis, local invasion and the formation of metastases are clinically the most relevant, but they are the least well understood at the molecular level. Revealing their mechanisms is one of the main challenges for exploratory and applied cancer research. Recent experimental progress has identified a number of molecular pathways and cellular mechanisms that underlie the multistage process of metastasis formation: these include tumour invasion, tumour-cell dissemination through the bloodstream or the lymphatic system, colonization of distant organs and, finally, fatal outgrowth of metastases.
                Bookmark

                Author and article information

                Journal
                26487802
                10.2147/DDDT.S89805

                As4S4,E-cadherin,MMPs,VEGF,realgar,xenograft
                As4S4, E-cadherin, MMPs, VEGF, realgar, xenograft

                Comments

                Comment on this article