22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Expression and Secretion of CXCL8 (IL-8), Release of Tryptase and Transcription of Histidine Decarboxylase mRNA by Anti-IgE-Activated Human Umbilical Cord Blood-Derived Cultured Mast Cells

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of cytokine receptors and alterations in cytokines are thought to play important roles in neuronal dysfunction and in the pathogenesis of the nervous system diseases. CXCL8 (IL-8) is a CXC chemokine with chemotactic and inflammatory properties. Chemokines control mast cell infiltration in several inflammatory diseases, including stress and neurological dysfunctions. Using isolated human umbilical cord blood-derived cultured mast cells (HUCMC) from hematopoietic stem cells CD34+, mast cells were immunologically activated with anti-IgE at concentrations of 1, 5, 10 and 20 µg/ml leading to the dose-dependent production of IL-8 (p < 0.05). The increase in IL-8 mRNA expression was also noted when the cells were treated with anti-IgE at 10 µg/ml for 6 h. Immunologically activated HUCMC provoked the generation of tryptase in a dose- and time-dependent manner. We also found increased histidine decarboxylase (HDC) expression in activated HUCMC after 6 h of incubation, a rate-limiting enzyme responsible for the generation of histamine from histidine. Taken together, these results confirm that anti-IgE-activated mast cells release inflammatory mediators including CXCL8, a CXC chemokine which regulates several biological effects of mast cells, e.g. chemoattraction, and possibly causes cell arrest.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          Mast cells: the Jekyll and Hyde of tumor growth.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells.

            Mast cells play a critical role in host defense against bacterial infection. Murine mast cells produce cytokines in response to bacterial peptidoglycan and LPS via Toll-like receptor (TLR) TLR2- and TLR4-dependent mechanisms. The expression of TLRs by human mast cells and responses to known TLR activators was examined. Human mast cells expressed mRNA for TLR1, TLR2, and TLR6 but not TLR4. Bacterial peptidoglycan and yeast zymosan were potent inducers of GM-CSF and IL-1beta and also induced substantial short-term cysteinyl leukotriene generation. In contrast, a synthetic triacylated lipopeptide induced short-term degranulation but failed to induce cysteinyl leukotriene production. The TLR4 activator Escherichia coli LPS did not induce a GM-CSF, IL-1beta leukotriene, or degranulation response. These data demonstrate highly selective production of different classes of mast cell mediators in response to distinct TLR activators of potential importance to the host response to bacterial or fungal pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective suppression of neutrophil accumulation in ongoing pulmonary inflammation by systemic inhibition of p38 mitogen-activated protein kinase.

              The p38 mitogen-activated protein kinase (MAPK) signaling pathway regulates a wide range of inflammatory responses in many different cells. Inhibition of p38 MAPK before exposing a cell to stress stimuli has profound anti-inflammatory effects, but little is known about the effects of p38 MAPK inhibition on ongoing inflammatory responses. LPS-induced activation of p38 MAPK in human neutrophils was inhibited by poststimulation exposure to a p38 MAPK inhibitor (M39). Release of TNF-alpha, macrophage-inflammatory protein (MIP)-2 (MIP-1beta), and IL-8 by LPS-stimulated neutrophils was also reduced by poststimulation p38 MAPK inhibition. In contrast, release of monocyte chemoattractant protein-1 was found to be p38 MAPK independent. Ongoing chemotaxis toward IL-8 was eliminated by p38 MAPK inhibition, although the rate of nondirectional movement was not reduced. A murine model of acute LPS-induced lung inflammation was used to study the effect of p38 MAPK inhibition in ongoing pulmonary inflammation. Initial pulmonary cell responses occur within 4 h of stimulation in this model, so M39 was administered 4 h or 12 h after exposure of the animals to aerosolized LPS to avoid inhibition of cytokine release. Quantities of TNF-alpha, MIP-2, KC, or monocyte chemoattractant protein-1 recovered from bronchial alveolar lavage or serum were not changed. Recruitment of neutrophils, but not other leukocytes, to the airspaces was significantly reduced. Together, these data demonstrate the selective reduction of LPS-induced neutrophil recruitment to the airspaces, independent of suppression of other inflammatory responses. These findings support the feasibility of p38 MAPK inhibition as a selective intervention to reduce neutrophilic inflammation.
                Bookmark

                Author and article information

                Journal
                Neuroimmunomodulation
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                September 1 2007
                2007
                August 21 2007
                : 14
                : 2
                : 97-104
                Article
                10.1159/000107425
                d33b1012-d964-4d21-8085-4adc6d8f79f1
                © 2007

                https://www.karger.com/Services/SiteLicenses

                https://www.karger.com/Services/SiteLicenses

                History

                Comments

                Comment on this article