59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Osteoarthritis: toward a comprehensive understanding of pathological mechanism.

      Bone research
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis.

          Osteoarthritis (OA) is characterized by degeneration of articular cartilage, limited intraarticular inflammation with synovitis, and changes in peri-articular and subchondral bone. Multiple factors are involved in the pathogenesis of OA, including mechanical influences, the effects of aging on cartilage matrix composition and structure, and genetic factors. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases, growth factors, cytokines, and other inflammatory mediators by chondrocytes, research has focused on the chondrocyte as the cellular mediator of OA pathogenesis. The other cells and tissues of the joint, including the synovium and subchondral bone, also contribute to pathogenesis. The adult articular chondrocyte, which normally maintains the cartilage with a low turnover of matrix constituents, has limited capacity to regenerate the original cartilage matrix architecture. It may attempt to recapitulate phenotypes of early stages of cartilage development, but the precise zonal variations of the original cartilage cannot be replicated. Current pharmacological interventions that address chronic pain are insufficient, and no proven structure-modifying therapy is available. Cartilage tissue engineering with or without gene therapy is the subject of intense investigation. There are multiple animal models of OA, but there is no single model that faithfully replicates the human disease. This review will focus on questions currently under study that may lead to better understanding of mechanisms of OA pathogenesis and elucidation of effective strategies for therapy, with emphasis on mechanisms that affect the function of chondrocytes and interactions with surrounding tissues. 2007 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study.

            To examine the association of low-grade systemic inflammation with diabetes, as well as its heterogeneity across subgroups, we designed a case-cohort study representing the approximately 9-year experience of 10,275 Atherosclerosis Risk in Communities Study participants. Analytes were measured on stored plasma of 581 incident cases of diabetes and 572 noncases. Statistically significant hazard ratios of developing diabetes for those in the fourth (versus first) quartile of inflammation markers, adjusted for age, sex, ethnicity, study center, parental history of diabetes, and hypertension, ranged from 1.9 to 2.8 for sialic acid, orosomucoid, interleukin-6, and C-reactive protein. After additional adjustment for BMI, waist-to-hip ratio, and fasting glucose and insulin, only the interleukin-6 association remained statistically significant (HR = 1.6, 1.01-2.7). Exclusion of GAD antibody-positive individuals changed associations minimally. An overall inflammation score based on these four markers plus white cell count and fibrinogen predicted diabetes in whites but not African Americans (interaction P = 0.005) and in nonsmokers but not smokers (interaction P = 0.13). The fully adjusted hazard ratio comparing white nonsmokers with score extremes was 3.7 (P for linear trend = 0.008). In conclusion, a low-grade inflammation predicts incident type 2 diabetes. The association is absent in smokers and African-Americans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study.

              Excess adiposity is associated with greater systemic inflammation. Whether visceral adiposity is more proinflammatory than subcutaneous abdominal adiposity is unclear. We examined the relations of abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), assessed by multidetector computerized tomography, to circulating inflammatory and oxidative stress biomarkers in 1250 Framingham Heart Study participants (52% women; age 60+/-9 years). Biomarkers were examined in relation to increments of SAT and VAT after adjustment for age, sex, smoking, physical activity, menopause, hormone replacement therapy, alcohol, and aspirin use; additional models included body mass index and waist circumference. SAT and VAT were positively and similarly (with respect to strength of association) related to C-reactive protein, fibrinogen, intercellular adhesion molecule-1, interleukin-6, P-selectin, and tumor necrosis factor receptor-2 (multivariable model R2 0.06 to 0.28 [SAT] and 0.07 to 0.29 [VAT]). However, compared with SAT, VAT was more highly associated with urinary isoprostanes and monocyte chemoattractant protein-1 (SAT versus VAT comparison: isoprostanes, R2 0.07 versus 0.10, P=0.002; monocyte chemoattractant protein-1, R2 0.07 versus 0.08, P=0.04). When body mass index and waist circumference were added to the models, VAT remained significantly associated with only C-reactive protein (P=0.0003 for women; P=0.006 for men), interleukin-6 (P=0.01), isoprostanes (P=0.0002), and monocyte chemoattractant protein-1 (P=0.008); SAT only remained associated with fibrinogen (P=0.01). The present cross-sectional data support an association between both SAT and VAT with inflammation and oxidative stress. The data suggest that the contribution of visceral fat to inflammation may not be completely accounted for by clinical measures of obesity (body mass index and waist circumference).
                Bookmark

                Author and article information

                Journal
                28149655
                5240031
                10.1038/boneres.2016.44

                Comments

                Comment on this article