29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Advanced glycation end products in clinical nephrology.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a result of oxidative and carbonyl stress, advanced glycation end products (AGEs) are involved in the pathogenesis of severe and frequent diseases and their fatal vascular/cardiovascular complications, i.e. diabetes mellitus and its complications (nephropathy, angiopathy, neuropathy and retinopathy, renal failure and uremic and dialysis-associated complications), atherosclerosis and dialysis-related amyloidosis, neurodegenerative diseases, and rheumatoid arthritis. They are formed via non-enzymatic glycation which is specifically enhanced through the presence of oxidative and carbonyl stress, and their ability to form glycoxidation products in peptide and protein structures finally modulating or inducing biological reactivity. Food can be another source of AGEs; however, high serum AGEs in hemodialysis patients might reflect nutritional status better. Several methods of renal replacement therapy have been studied in connection with the AGE removal, but unfortunately the possibilities are still unsatisfactory even if high flux dialysis, hemofiltration, or hemodiafiltration give better results than conventional low flux dialysis. AGEs are currently being studied in the patients on peritoneal dialysis as their precursors can be formed in the dialysis fluid. AGEs can cause damage to the peritoneum and so a loss of ultrafiltration capacity. Many compounds give promising results in AGE inhibition (inhibition of formation of AGEs, inhibition of their action or degradation of AGEs), are tested for these properties, and eventually undergo clinical studies (e.g. aminoguanidine, OPB-9195, pyridoxamine, antioxidants, N-phenacylthiazolium bromide, antihypertensive drugs, angiotensin-converting enzyme inhibitors and angiotensin II receptor-1 antagonists).

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Tobacco smoke is a source of toxic reactive glycation products.

          Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products "glycotoxins." Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products.

              The receptor for advanced glycation end products, RAGE, is a member of the immunoglobulin superfamily of cell surface molecules differentially expressed on a range of cell types. Ligation of RAGE perturbs homeostatic mechanisms and, potentially, provides a basis for cellular dysfunction in pathologic situations in which its ligands accumulate. To understand factors underlying RAGE expression, we cloned the 5'-flanking region of the RAGE gene and characterized putative regulatory motifs. Analysis of the putative promoter region revealed the presence of three potential NF-kappaB-like and two SP1 binding sites. Transient transfection of vascular endothelial and smooth muscle cells using chimeric 5'-deletion constructs linked to luciferase reporter revealed that the region -1543/-587 contributed importantly to both basal and stimulated expression of the RAGE gene. This region of the RAGE gene contained three putative NF-kappaB-like binding sites and was responsible for increased luciferase activity observed when endothelial or smooth muscle cells were stimulated with lipopolysaccharide. DNase I footprinting assays and electrophoretic mobility shift assay revealed that two of the three NF-kappaB-like binding sites (1 and 2) were likely functional and responsive to stimuli. Upon simultaneous mutation of NF-kappaB-like sites 1 and 2, both basal promoter expression and response to stimulation with LPS, as measured by relative luciferase activity, were significantly diminished. These results point to NF-kappaB-dependent mechanisms regulating cellular expression of RAGE and suggest a means of linking RAGE to the inflammatory response.
                Bookmark

                Author and article information

                Journal
                Kidney Blood Press. Res.
                Kidney & blood pressure research
                S. Karger AG
                1420-4096
                1420-4096
                2004
                : 27
                : 1
                Affiliations
                [1 ] Institute of Medical Biochemistry, 1st Faculty of Medicine and University Hospital, Charles University, Prague, Czech Republic. mkalousova@hotmail.com
                Article
                75533
                10.1159/000075533
                14679311
                56929093-3348-47ba-a5a1-ebbc5408577c
                History

                Comments

                Comment on this article