73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N 6-methyladenosine (m6A) mRNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found ~70% of endometrial tumors exhibit reductions in m6A methylation that are likely due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signaling.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma

          (2017)
          We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cytoplasmic m6A reader YTHDF3 promotes mRNA translation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2.

              The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic component of two evolutionarily conserved signaling complexes. mTOR signaling complex 1 (mTORC1) is a key regulator of growth factor and nutrient signaling. S6 kinase is the best-characterized downstream effector of mTORC1. mTOR signaling complex 2 (mTORC2) has a role in regulating the actin cytoskeleton and activating Akt through S473 phosphorylation. Herein, we show that mTOR is phosphorylated differentially when associated with mTORC1 and mTORC2 and that intact complexes are required for these mTORC-specific mTOR phosphorylations. Specifically, we find that mTORC1 contains mTOR phosphorylated predominantly on S2448, whereas mTORC2 contains mTOR phosphorylated predominantly on S2481. Using S2481 phosphorylation as a marker for mTORC2 sensitivity to rapamycin, we find that mTORC2 formation is in fact rapamycin sensitive in several cancer cell lines in which it had been previously reported that mTORC2 assembly and function were rapamycin insensitive. Thus, phospho-S2481 on mTOR serves as a biomarker for intact mTORC2 and its sensitivity to rapamycin.
                Bookmark

                Author and article information

                Journal
                Nature Cell Biology
                Nat Cell Biol
                Springer Nature America, Inc
                1465-7392
                1476-4679
                September 2018
                August 27 2018
                September 2018
                : 20
                : 9
                : 1074-1083
                Article
                10.1038/s41556-018-0174-4
                c8965266-7fcd-48be-93b5-c71541b8abd2
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article