37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The faster potassium-lowering effect of high dialysate bicarbonate concentrations in chronic haemodialysis patients.

      Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperkalaemia is common in patients with advanced renal disease. In this double-blind, randomized, three-sequence, crossover study, we compared the effect of three dialysate bicarbonate concentrations ([HCO3-]) on the kinetics of serum potassium (K+) reduction during a conventional haemodialysis (HD) session in chronic HD patients.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure.

          The development of life-threatening hyperkalemia poses a risk for patients with chronic preterminal renal failure. Various therapeutic options have been suggested for hyperkalemic emergencies in these patients; to date, however, no study has evaluated the relative efficacies of these measures in the presence of renal failure. Our goal was to examine the acute effects of a variety of therapeutic approaches, as well as those of hemodialysis, on plasma potassium levels in a hemodialysis population. Ten patients with terminal renal failure undergoing maintenance hemodialysis were enrolled in the study. Blood gas parameters and plasma sodium, potassium, glucose, osmolality, renin, aldosterone, epinephrine, norepinephrine, dopamine, and insulin were measured before, during, and after 60-minute infusions of bicarbonate, epinephrine, and insulin in glucose, and before, during, and after performance of regular hemodialysis for one hour. Hypertonic as well as isotonic intravenous bicarbonate (2 to 4 mmol/minute) induced a marked rise in plasma bicarbonate and pH, but failed to lower the plasma potassium level (5.66 versus 5.83 mmol/liter before and after). Epinephrine, 0.05 microgram/kg/minute administered intravenously, decreased plasma potassium only slightly from 5.57 to 5.25 mmol/liter, and five patients showed no decline. On the other hand, insulin in glucose, 5 mU/kg/minute intravenously, effectively lowered plasma potassium levels from 5.62 to 4.70 mmol/liter, and hemodialysis induced the most rapid decline from 5.63 to 4.29 mmol/liter. Plasma aldosterone was elevated before treatment; it correlated with plasma potassium and dropped during intravenous bicarbonate administration or hemodialysis. Pretreatment plasma renin activity, insulin, epinephrine, norepinephrine, and dopamine levels were generally normal. We conclude that in patients with terminal renal failure undergoing maintenance hemodialysis, intravenous bicarbonate is ineffective in lowering plasma potassium rapidly, and epinephrine is effective in only half the patients, whereas insulin in glucose is a fast and reliable form of therapy for hyperkalemic emergencies. Plasma aldosterone levels are appropriate in relationship to plasma potassium levels, and levels of other potassium-influencing hormones are generally normal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of a new model of hemodialysis potassium removal on the control of ventricular arrhythmias.

            The primary aim of this multicenter, prospective, randomized cross-over study was to clarify whether a new model of hemodialysis (HD) potassium (K) removal using a decreasing intra-HD dialysate K concentration and a constant plasma-dialysate K gradient (treatment B) is capable of reducing the arrhythmogenic effect of standard HD, which has a constant dialysate K concentration and decreasing plasma-dialysate K gradient (treatment A). The secondary aim was to verify whether this new model is clinically safe. In treatment B, the initial dialysate K concentration had to be 1.5 mEq/liter less than the plasma K concentration, and exponentially decrease to 2.5 mEq/liter at the end of HD. Forty-two chronic HD patients with an increase in premature ventricular complexes (PVC) during dialysis were enrolled from 18 participating centers, and randomly assigned to either sequence 1 (ABA) or sequence 2 (BAB). A pool of 333 of 378 expected ECG Holter recordings were checked for signal quality; 269 (71%) from 36 patients (86%) had a satisfactory signal quality and 108 were selected for analysis (1 per patient per period). There was a difference in the natural logarithm of the increase in PVC/hr and PVC couplets/hr during HD between treatments A and B (1.70 +/- 1.59 vs. 1.09 +/- 1.76 and 0.94 +/- 0.86 vs. 0.64 +/- 1.01, a reduction of 36% and 32%, P = 0.011 and 0.047, respectively) without any carry over effect (P = 0.61 and 0.24, respectively). The fact that this decrease of one third is due to a lower plasma-dialysate K gradient is supported by the observation that it was more evident during the first than the last two hours of HD (a reduction in the natural logarithm of the increase in PVC/hr and PVC couplets/hr of 60% and 60%, P 0.002 and 0.009, vs. 26% and 17%, P = 0.098 and 0.332, respectively): the initial plasma-dialysate K gradient was 2.3 times lower during treatment B than during treatment A, without adversely affecting pre-HD plasma K levels. These results could have a considerably clinical impact not only because of the possibility of physiologically decreasing the arrhythmogenic effect of HD, but also because this effect can be considered a "marker" of the electrophysiological derangement induced by the administration of standard HD three times a week for years ("electric disequilibrium syndrome").
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma potassium in patients with terminal renal failure during and after haemodialysis; relationship with dialytic potassium removal and total body potassium.

              Chronic haemodialysis (HD) patients may present with severe predialysis hyperkalaemia which is improved by dialytic treatment. However, factors influencing the behaviour of postdialysis plasma potassium (plasma K) are not well known.
                Bookmark

                Author and article information

                Journal
                15687112
                10.1093/ndt/gfh661

                Comments

                Comment on this article