13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: found

          Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

          Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial.

            In the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) study, fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) improved outcome compared with angiography-guided PCI for up to 2 years of follow-up. The aim in this study was to investigate whether the favourable clinical outcome with the FFR-guided PCI in the FAME study persisted over a 5-year follow-up.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coronary microvascular dysfunction: mechanisms and functional assessment.

              Obstructive disease of the epicardial coronary arteries was recognized as the cause of angina pectoris >2 centuries ago, and sudden thrombotic occlusion of an epicardial coronary artery has been established as the cause of acute myocardial infarction for >100 years. In the past 2 decades, dysfunction of the coronary microvasculature emerged as an additional mechanism of myocardial ischaemia that bears important prognostic implications. The coronary microvasculature (vessels <300 μm in diameter) cannot be directly imaged in vivo, but a number of invasive and noninvasive techniques, each with relative advantages and pitfalls, can be used to assess parameters that depend directly on coronary microvascular function. These methods include invasive or noninvasive measurement of Doppler-derived coronary blood flow velocity reserve, assessment of myocardial blood flow and flow reserve using noninvasive imaging, and calculation of microcirculatory resistance indexes during coronary catheterization. These advanced techniques for assessment of the coronary microvasculature have provided novel insights into the pathophysiological role of coronary microvascular dysfunction in the development of myocardial ischaemia in different clinical conditions.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Cardiology
                Nat Rev Cardiol
                Springer Science and Business Media LLC
                1759-5002
                1759-5010
                February 24 2020
                Article
                10.1038/s41569-020-0341-8
                2d63c68d-71b1-44fe-9343-25dae27deae9
                © 2020

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article