20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix.

      Biochemical systematics and ecology

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The volatile constituents of the marine sponge Ircinia felix were obtained by dynamic headspace extraction and analyzed by HRGC, HRGC-MS and HRGC-Odor at sniffing port. Fifty-nine volatiles were identified for the first time in the odor of this sponge. Hydrocarbons (32.9%), alcohols (17.8%) and carbonyl compounds (16.0%) predominated in the sponge volatile profile, followed by esters (11.6%), halogen compounds (8.6%), ethers (7.7%), nitrogen and/or sulfur compounds (4.6%) and carboxylic acids (0.8%). Among the identified volatiles, thiobismethane (commonly known as dimethylsulfide), methyl isocyanide and methyl isothiocyanate were found to be responsible for the nauseating and toxic smell emitted by the sponge and for the antimicrobial activity detected in the volatile extract. Exudation experiments in aquarium and in situ conditions revealed that thiobismethane, methyl isocyanide and methyl isothiocyanate are continuously released by the sponge. Upon injury, the concentration of these volatiles increased strongly. Hence, these substances form a chemical protective barrier which may help these sponges avoid fouling, compete for space, prevent infection in the short term, and/or signal generalist predators regarding the existence of other toxic substances in the internal tissues.

          Related collections

          Author and article information

          Journal
          11274769

          Comments

          Comment on this article