56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flavonoids as important molecules of plant interactions with the environment.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flavonoids are small molecular secondary metabolites synthesized by plants with various biological activities. Due to their physical and biochemical properties, they are capable of participating in plants' interactions with other organisms (microorganisms, animals and other plants) and their reactions to environmental stresses. The majority of their functions result from their strong antioxidative properties. Although an increasing number of studies focus on the application of flavonoids in medicine or the food industry, their relevance for the plants themselves also deserves extensive investigations. This review summarizes the current knowledge on the functions of flavonoids in the physiology of plants and their relations with the environment.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants.

          Flavonoids are phenolic substances isolated from a wide range of vascular plants, with over 8000 individual compounds known. They act in plants as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellants, and for light screening. Many studies have suggested that flavonoids exhibit biological activities, including antiallergenic, antiviral, antiinflammatory, and vasodilating actions. However, most interest has been devoted to the antioxidant activity of flavonoids, which is due to their ability to reduce free radical formation and to scavenge free radicals. The capacity of flavonoids to act as antioxidants in vitro has been the subject of several studies in the past years, and important structure-activity relationships of the antioxidant activity have been established. The antioxidant efficacy of flavonoids in vivo is less documented, presumably because of the limited knowledge on their uptake in humans. Most ingested flavonoids are extensively degraded to various phenolic acids, some of which still possess a radical-scavenging ability. Both the absorbed flavonoids and their metabolites may display an in vivo antioxidant activity, which is evidenced experimentally by the increase of the plasma antioxidant status, the sparing effect on vitamin E of erythrocyte membranes and low-density lipoproteins, and the preservation of erythrocyte membrane polyunsaturated fatty acids. This review presents the current knowledge on structural aspects and in vitro antioxidant capacity of most common flavonoids as well as in vivo antioxidant activity and effects on endogenous antioxidants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.

            Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoids as antioxidants in plants: location and functional significance.

              Stress-responsive dihydroxy B-ring-substituted flavonoids have great potential to inhibit the generation of reactive oxygen species (ROS) and reduce the levels of ROS once they are formed, i.e., to perform antioxidant functions. These flavonoids are located within or in the proximity of centers of ROS generation in severely stressed plants. Efficient mechanisms have been recently identified for the transport of flavonoids from the endoplasmic reticulum, the site of their biosynthesis, to different cellular compartments. The mechanism underlying flavonoid-mediated ROS reduction in plants is still unclear. 'Antioxidant' flavonoids are found in the chloroplast, which suggests a role as scavengers of singlet oxygen and stabilizers of the chloroplast outer envelope membrane. Dihydroxy B-ring substituted flavonoids are present in the nucleus of mesophyll cells and may inhibit ROS-generation making complexes with Fe and Cu ions. The genes that govern the biosynthesis of antioxidant flavonoids are present in liverworts and mosses and are mostly up-regulated as a consequence of severe stress. This suggests that the antioxidant flavonoid metabolism is a robust trait of terrestrial plants. Vacuolar dihydroxy B-ring flavonoids have been reported to serve as co-substrates for vacuolar peroxidases to reduce H(2)O(2) escape from the chloroplast, following the depletion of ascorbate peroxidase activity. Antioxidant flavonoids may effectively control key steps of cell growth and differentiation, thus acting regulating the development of the whole plant and individual organs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules (Basel, Switzerland)
                1420-3049
                1420-3049
                2014
                : 19
                : 10
                Affiliations
                [1 ] Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
                [2 ] Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland. kamilkostyn@o2.pl.
                Article
                molecules191016240
                10.3390/molecules191016240
                25310150
                406f0f69-c51d-4e45-8581-ef7cb2308758
                History

                Comments

                Comment on this article