74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs.

          Methodology/Principal Findings

          After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins.

          Conclusions/Significance

          SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.

          Author Summary

          Tsetse fly (Diptera; Glossinidae) transmits two devastating diseases to farmers (human African Trypanosomiasis; HAT) and their livestock (Animal African Trypanosomiasis; AAT) in 37 sub-Saharan African countries. During the rainy seasons, vast areas of fertile, arable land remain uncultivated as farmers flee their homes due to the presence of tsetse. Available drugs against trypanosomiasis are ineffective and difficult to administer. Control of the tsetse vector by Sterile Insect Technique (SIT) has been effective. This method involves repeated release of sterilized males into wild tsetse populations, which compete with wild type males for females. Upon mating, there is no offspring, leading to reduction in tsetse populations and thus relief from trypanosomiasis. The SIT method requires large-scale tsetse rearing to produce sterile males. However, tsetse colony productivity is hampered by infections with the salivary gland hypertrophy virus, which is transmitted via saliva as flies take blood meals during membrane feeding and often leads to colony collapse. Here, we investigated the salivary gland secretome proteins of virus-infected tsetse to broaden our understanding of virus infection, transmission and pathology. By this approach, we obtain insight in tsetse-hytrosavirus interactions and identified potential candidate proteins as targets for developing biotechnological strategies to control viral infections in tsetse colonies.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular chaperones in cellular protein folding.

          F U Hartl (1996)
          The folding of many newly synthesized proteins in the cell depends on a set of conserved proteins known as molecular chaperones. These prevent the formation of misfolded protein structures, both under normal conditions and when cells are exposed to stresses such as high temperature. Significant progress has been made in the understanding of the ATP-dependent mechanisms used by the Hsp70 and chaperonin families of molecular chaperones, which can cooperate to assist in folding new polypeptide chains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The prophenoloxidase-activating system in invertebrates.

            A major innate defense system in invertebrates is the melanization of pathogens and damaged tissues. This important process is controlled by the enzyme phenoloxidase (PO) that in turn is regulated in a highly elaborate manner for avoiding unnecessary production of highly toxic and reactive compounds. Recent progress, especially in arthropods, in the elucidation of mechanisms controlling the activation of zymogenic proPO into active PO by a cascade of serine proteinases and other factors is reviewed. The proPO-activating system (proPO system) is triggered by the presence of minute amounts of compounds of microbial origins, such as beta-1,3-glucans, lipopolysaccharides, and peptidoglycans, which ensures that the system will become active in the presence of potential pathogens. The presence of specific proteinase inhibitors prevents superfluous activation. Concomitant with proPO activation, many other immune reactions will be produced, such as the generation of factors with anti-microbial, cytotoxic, opsonic, or encapsulation-promoting activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics.

              MaxQuant is a quantitative proteomics software package designed for analyzing large mass spectrometric data sets. It is specifically aimed at high-resolution mass spectrometry (MS) data. Currently, Thermo LTQ-Orbitrap and LTQ-FT-ICR instruments are supported and Mascot is used as a search engine. This protocol explains step by step how to use MaxQuant on stable isotope labeling by amino acids in cell culture (SILAC) data obtained with double or triple labeling. Complex experimental designs, such as time series and drug-response data, are supported. A standard desktop computer is sufficient to fulfill the computational requirements. The workflow has been stress tested with more than 1,000 liquid chromatography/mass spectrometry runs in a single project. In a typical SILAC proteome experiment, hundreds of thousands of peptides and thousands of proteins are automatically and reliably quantified. Additional information for identified proteins, such as Gene Ontology, domain composition and pathway membership, is provided in the output tables ready for further bioinformatics analysis. The software is freely available at the MaxQuant home page.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                November 2011
                22 November 2011
                : 5
                : 11
                : e1371
                Affiliations
                [1 ]Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
                [2 ]Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
                [3 ]Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
                [4 ]Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
                [5 ]Yale School of Public Health, New Haven, Connecticut, United States of America
                National Institute of Allergy and Infectious Diseases, United States of America
                Author notes

                Conceived and designed the experiments: JV HK AA. Performed the experiments: HK AA AI SB. Analyzed the data: SB AI HK. Wrote the paper: MvO AP SA JV HK.

                Article
                PNTD-D-11-00641
                10.1371/journal.pntd.0001371
                3222630
                22132244
                295d47b0-7912-4ff4-8cb4-7705ebd594f4
                Kariithi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 July 2011
                : 5 September 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Agriculture
                Biology
                Medicine
                Veterinary Science

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article