307
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes

      Cell

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of death receptor signals by cellular FLIP.

          The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.

            Tumor necrosis factor (TNF) can induce apoptosis and activate NF-kappa B through signaling cascades emanating from TNF receptor 1 (TNFR1). TRADD is a TNFR1-associated signal transducer that is involved in activating both pathways. Here we show that TRADD directly interacts with TRAF2 and FADD, signal transducers that activate NF-kappa B and induce apoptosis, respectively. A TRAF2 mutant lacking its N-terminal RING finger domain is a dominant-negative inhibitor of TNF-mediated NF-kappa B activation, but does not affect TNF-induced apoptosis. Conversely, a FADD mutant lacking its N-terminal 79 amino acids is a dominant-negative inhibitor of TNF-induced apoptosis, but does not inhibit NF-kappa B activation. Thus, these two TNFR1-TRADD signaling cascades appear to bifurcate at TRADD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors.

              Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.
                Bookmark

                Author and article information

                Journal
                10.1016/S0092-8674(03)00521-X

                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article