67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bayesian Inference for partially observed SDEs Driven by Fractional Brownian Motion

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a non-trivial likelihood given the latent path. Due to the non-Markovianity and high-dimensionality of the latent paths, estimating posterior expectations is a computationally challenging undertaking. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use this framework to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The Markov chain Monte Carlo algorithm is based on a version of hybrid Monte Carlo that delivers increased efficiency when applied on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model allowing for memory in the volatility increments through a fractional specification. The methodology is illustrated on simulated data and on the S&P500/VIX time series and is shown to be effective. Contrary to a long range dependence attribute of such models often assumed in the literature, with Hurst parameter larger than 1/2, the posterior distribution favours values smaller than 1/2, pointing towards medium range dependence.

          Related collections

          Author and article information

          Journal
          1307.0238
          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Methodology
          Methodology

          Comments

          Comment on this article