25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune-Related Functional Differential Gene Expression in Koi Carp (Cyprinus carpio) after Challenge with Aeromonas sobria

      International Journal of Molecular Sciences
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to understand the molecular basis underlying the host immune response of koi carp (Cyprinus carpio), Illumina HiSeqTM 2000 is used to analyze the muscle and spleen transcriptome of koi carp infected with Aeromonas sobria (A. sobria). De novo assembly of paired-end reads yielded 69,480 unigenes, of which the total length, average length, N50, and GC content are 70,120,028 bp, 1037 bp, 1793 bp, and 45.77%, respectively. Annotation is performed by comparison against various databases, yielding 42,229 (non-redundant protein sequence (NR): 60.78%), 59,255 (non-redundant nucleotide (NT): 85.28%), 35,900 (Swiss-Prot: 51.67%), 11,772 (clusters of orthologous groups (COG): 16.94%), 33,057 (Kyoto Encyclopedia of Genes and Genomes (KEGG): 47.58%), 18,764 (Gene Ontology (GO): 27.01%), and 32,085 (Interpro: 46.18%) unigenes. Comparative analysis of the expression profiles between bacterial challenge fish and control fish identifies 7749 differentially expressed genes (DEGs) from the muscle and 7846 DEGs from the spleen. These DEGs are further categorized with KEGG. Enrichment analysis of the DEGs and unigenes reveals major immune-related functions, including up-regulation of genes related with Toll-like receptor signaling, complement and coagulation cascades, and antigen processing and presentation. The results from RNA-Seq data are also validated and confirmed the consistency of the expression levels of seven immune-related genes after 24 h post infection with qPCR. Microsatellites (11,534), including di-to hexa nucleotide repeat motifs, are also identified. Altogether, this work provides valuable insights into the underlying immune mechanisms elicited during bacterial infection in koi carp that may aid in the future development of disease control measures in protection against A. sobria.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).

          A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

            Background New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. Results More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. Conclusion The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and population connectivity studies. The characterization of the larval transcriptome for this widely-studied coral will enable research into the biological processes underlying stress responses in corals and evolutionary adaptation to global climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study

              Background With the fast advances in nextgen sequencing technology, high-throughput RNA sequencing has emerged as a powerful and cost-effective way for transcriptome study. De novo assembly of transcripts provides an important solution to transcriptome analysis for organisms with no reference genome. However, there lacked understanding on how the different variables affected assembly outcomes, and there was no consensus on how to approach an optimal solution by selecting software tool and suitable strategy based on the properties of RNA-Seq data. Results To reveal the performance of different programs for transcriptome assembly, this work analyzed some important factors, including k-mer values, genome complexity, coverage depth, directional reads, etc. Seven program conditions, four single k-mer assemblers (SK: SOAPdenovo, ABySS, Oases and Trinity) and three multiple k-mer methods (MK: SOAPdenovo-MK, trans-ABySS and Oases-MK) were tested. While small and large k-mer values performed better for reconstructing lowly and highly expressed transcripts, respectively, MK strategy worked well for almost all ranges of expression quintiles. Among SK tools, Trinity performed well across various conditions but took the longest running time. Oases consumed the most memory whereas SOAPdenovo required the shortest runtime but worked poorly to reconstruct full-length CDS. ABySS showed some good balance between resource usage and quality of assemblies. Conclusions Our work compared the performance of publicly available transcriptome assemblers, and analyzed important factors affecting de novo assembly. Some practical guidelines for transcript reconstruction from short-read RNA-Seq data were proposed. De novo assembly of C. sinensis transcriptome was greatly improved using some optimized methods.
                Bookmark

                Author and article information

                Journal
                10.3390/ijms19072107
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article