75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.

      Molecular Psychiatry
      Animals, Apoptosis, drug effects, physiology, Behavior, Animal, Brain, pathology, physiopathology, Cell Proliferation, Chronic Disease, Depressive Disorder, drug therapy, etiology, Hippocampus, Male, Mice, Mice, Transgenic, Microglia, Neurogenesis, Rats, Stress, Psychological, complications, Uncertainty

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The limited success in understanding the pathophysiology of major depression may result from excessive focus on the dysfunctioning of neurons, as compared with other types of brain cells. Therefore, we examined the role of dynamic alterations in microglia activation status in the development of chronic unpredictable stress (CUS)-induced depressive-like condition in rodents. We report that following an initial period (2-3 days) of stress-induced microglial proliferation and activation, some microglia underwent apoptosis, leading to reductions in their numbers within the hippocampus, but not in other brain regions, following 5 weeks of CUS exposure. At that time, microglia displayed reduced expression of activation markers as well as dystrophic morphology. Blockade of the initial stress-induced microglial activation by minocycline or by transgenic interleukin-1 receptor antagonist overexpression rescued the subsequent microglial apoptosis and decline, as well as the CUS-induced depressive-like behavior and suppressed neurogenesis. Similarly, the antidepressant drug imipramine blocked the initial stress-induced microglial activation as well as the CUS-induced microglial decline and depressive-like behavior. Treatment of CUS-exposed mice with either endotoxin, macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor, all of which stimulated hippocampal microglial proliferation, partially or completely reversed the depressive-like behavior and dramatically increased hippocampal neurogenesis, whereas treatment with imipramine or minocycline had minimal or no anti-depressive effects, respectively, in these mice. These findings provide direct causal evidence that disturbances in microglial functioning has an etiological role in chronic stress-induced depression, suggesting that microglia stimulators could serve as fast-acting anti-depressants in some forms of depressive and stress-related conditions.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Major depressive disorder.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation.

            This paper evaluates the validity, reliability and utility of the chronic mild stress (CMS) model of depression. In the CMS model, rats or mice are exposed sequentially, over a period of weeks, to a variety of mild stressors, and the measure most commonly used to track the effects is a decrease in consumption of a palatable sweet solution. The model has good predictive validity (behavioural changes are reversed by chronic treatment with a wide variety of antidepressants), face validity (almost all demonstrable symptoms of depression have been demonstrated), and construct validity (CMS causes a generalized decrease in responsiveness to rewards, comparable to anhedonia, the core symptom of the melancholic subtype of major depressive disorder). Overall, the CMS procedure appears to be at least as valid as any other animal model of depression. The procedure does, however, have two major drawbacks. One is the practical difficulty of carrying out CMS experiments, which are labour intensive, demanding of space, and of long duration. The other is that, while the procedure operates reliably in many laboratories, it can be difficult to establish, for reasons which remain unclear. However, once established, the CMS model can be used to study problems that are extremely difficult to address by other means.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Neurobiology of Depression

                Bookmark

                Author and article information

                Comments

                Comment on this article