33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Treatment with Salsalate, Menhaden Oil, Combination of Salsalate and Menhaden Oil, or Resolvin D1 of C57Bl/6J Type 1 Diabetic Mouse on Neuropathic Endpoints

      Journal of Nutrition and Metabolism
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims . In this study a streptozotocin induced type 1 diabetes mouse model was used to assess the effectiveness of salsalate, menhaden oil, the combination of salsalate and menhaden oil, or resolvin D1 on neuropathic endpoints. Materials and Methods . Changes in body weight, blood glucose, serum markers for triglycerides, free fatty acids, cholesterol, and resolvin D1, motor and sensory nerve conduction velocities and thermal sensitivity were assessed, as well as performing in vivo confocal microscopy of subepithelial corneal nerves and immunohistochemistry of nerves in the cornea and foot pad. Results . Diabetic animals failed to gain weight and had elevated blood glucose levels. Diabetic mice had slowed nerve conduction velocity, reduced innervation of the foot pad and cornea subepithelial and epithelial layers, and reduced thermal sensitivity. Monotherapy treatment with salsalate, menhaden oil, and resolvin D1 reduced the pathological signs of diabetic neuropathy. The combination of salsalate and menhaden oil also reduced signs of pathology and generated elevated plasma levels of resolvin D1 compared to other groups. Conclusions . Additional studies are needed to determine whether the combination of salsalate and menhaden oil may be more efficacious than monotherapy alone for the treatment of diabetic peripheral neuropathy.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Resolvins and protectins in inflammation resolution.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients.

            The accurate detection, characterization and quantification of human diabetic neuropathy are important to define at risk patients, anticipate deterioration, and assess new therapies. Corneal confocal microscopy is a reiterative, rapid, non-invasive in vivo clinical examination technique capable of imaging corneal nerve fibres. The aim of this study was to define the ability of this technique to quantify the extent of degeneration and regeneration of corneal nerve fibres in diabetic patients with increasing neuropathic severity. We scanned the cornea and collected images of Bowman's layer (containing a rich nerve plexus) from 18 diabetic patients and 18 age-matched control subjects. Corneal nerve fibre density (F(3)=9.6, p<0.0001), length (F(3)=23.8, p<0.0001), and branch density (F(3)=13.9, p<0.0001) were reduced in diabetic patients compared with control subjects, with a tendency for greater reduction in these measures with increasing severity of neuropathy. Corneal confocal microscopy is a rapid, non-invasive in vivo clinical examination technique which accurately defines the extent of corneal nerve damage and repair and acts as a surrogate measure of somatic neuropathy in diabetic patients. It could represent an advance to define the severity of neuropathy and expedite assessment of therapeutic efficacy in clinical trials of human diabetic neuropathy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              n-3 fatty acids in cardiovascular disease.

                Bookmark

                Author and article information

                Journal
                10.1155/2016/5905891
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article