38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In neurodegenerative diseases, debris of dead neurons are thought to trigger glia-mediated neuroinflammation, thus increasing neuronal death. Here, we show that expression of neurotoxic proteins associated with these diseases in microglia alone is sufficient to trigger death of naïve neurons directly and to propagate neuronal death through activation of naïve astrocytes to A1 state. Injury propagation is mediated, in great part, by the release of fragmented and dysfunctional microglial mitochondria to the neuronal milieu. The amount of damaged mitochondria released from microglia relative to functional mitochondria and the consequent neuronal injury are determined by Fis1-mediated mitochondrial fragmentation within the glia cells. The propagation of inflammatory response and neuronal cell death by extracellular dysfunctional mitochondria suggests a potential new intervention for neurodegeneration – one that inhibits mitochondrial fragmentation in microglia, thus inhibiting the release of dysfunctional mitochondria into the extracellular milieu of the brain, without affecting the release of healthy neuroprotective mitochondria.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization.

          Mitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity.

            Excessive mitochondrial fission is associated with the pathology of a number of neurodegenerative diseases. Therefore, inhibitors of aberrant mitochondrial fission could provide important research tools in addition to potential leads for drug development. Using a rational approach, we designed a novel and selective peptide inhibitor, P110, of excessive mitochondrial fission. P110 inhibits Drp1 enzyme activity and blocks Drp1/Fis1 interaction in vitro and in cultured neurons, whereas it has no effect on the interaction between Drp1 and other mitochondrial adaptors, as demonstrated by co-immunoprecipitation. Furthermore, using a model of Parkinson's disease (PD) in culture, we demonstrated that P110 is neuroprotective by inhibiting mitochondrial fragmentation and reactive oxygen species (ROS) production and subsequently improving mitochondrial membrane potential and mitochondrial integrity. P110 increased neuronal cell viability by reducing apoptosis and autophagic cell death, and reduced neurite loss of primary dopaminergic neurons in this PD cell culture model. We also found that P110 treatment appears to have minimal effects on mitochondrial fission and cell viability under basal conditions. Finally, P110 required the presence of Drp1 to inhibit mitochondrial fission under oxidative stress conditions. Taken together, our findings suggest that P110, as a selective peptide inhibitor of Drp1, might be useful for the treatment of diseases in which excessive mitochondrial fission and mitochondrial dysfunction occur.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Innate Immunity and Neurodegeneration

              The innate immune system plays diverse roles in health and disease. It represents the first line of defense against infection and is involved in tissue repair, wound healing, and clearance of apoptotic cells and cellular debris. Excessive or nonresolving innate immune activation can lead to systemic or local inflammatory complications and cause or contribute to the development of inflammatory diseases. In the brain, microglia represent the key innate immune cells, which are involved in brain development, brain maturation, and homeostasis. Impaired microglial function, either through aberrant activation or decreased functionality, can occur during aging and during neurodegeneration, and the resulting inflammation is thought to contribute to neurodegenerative diseases. This review highlights recent advances in our understanding of the influence of innate immunity on neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                October 2019
                September 23 2019
                October 2019
                : 22
                : 10
                : 1635-1648
                Article
                10.1038/s41593-019-0486-0
                212bfb20-4e79-4ddb-8d81-ee8ee1f2e5af
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article