11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel rat model of inflammatory bowel disease developed using a device created with a 3D printer

      , , , ,
      Regenerative Therapy
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective Inflammatory bowel disease (IBD) is an intractable condition. Existing models of experimental IBD are limited by their inability to create consistent ulcers between animals. The aim of this study was to develop a novel model of experimental colitis with ulcers of reproducible size. Design We used a 3D printer to fabricate a novel device containing a small window (10 × 10 mm) that could be inserted rectally to facilitate the creation of a localized ulcer in the rat intestinal mucosa. The mucosa within the window of the device was exposed to 2,4,6-trinitrobenzene sulfonic acid (TNBS) to generate ulceration. We evaluated the effects of conventional drug therapies (mesalazine and prednisolone) and local transplantation of allogeneic adipose-derived mesenchymal stem cells (ASCs) on ulcer size (measured from photographic images using image analysis software) and degree of inflammation (assessed histologically). Results The novel method produced localized, circular or elliptical ulcers that were highly reproducible in terms of size and depth. The pathological characteristics of the lesions were similar to those reported previously for conventional models of TNBS-induced colitis that show greater variation in ulcer size. Ulcer area was significantly reduced by the administration of mesalazine or prednisolone as an enema or localized injection of ASCs. Conclusion The new model of TNBS-induced colitis, made with the aid of a device fabricated by 3D printing, generated ulcers that were reproducible in size. We anticipate that our new model of colitis will provide more reliable measures of treatment effects and prove useful in future studies of IBD therapies.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle.

          Mesenchymal stem cells (MSCs) are increasingly being reported as occurring in a variety of tissues. Although MSCs from human bone marrow are relatively easy to harvest, the isolation of rodent MSCs is more difficult, thereby limiting the number of experiments in vivo. To determine a suitable cell source, we isolated rat MSCs from bone marrow, synovium, periosteum, adipose, and muscle and compared their properties for yield, expansion, and multipotentiality. After two passages, the cells in each population were CD11b (-), CD45 (-), and CD90 (+). The colony number per nucleated cells derived from synovium was 100-fold higher than that for cells derived from bone marrow. With regard to expansion potential, synovium-derived cells were the highest in colony-forming efficiency, fold increase, and growth kinetics. An in vitro chondrogenesis assay demonstrated that the pellets derived from synovium were heavier, because of their greater production of cartilage matrix, than those from other tissues, indicating their superiority in chondrogenesis. Synovium-derived cells retained their chondrogenic potential after a few passages. The Oil Red-O positive colony-rate assay demonstrated higher adipogenic potential in synovium- and adipose-derived cells. Alkaline phosphatase activity was greater in periosteum- and muscle-derived cells during calcification. The yield and proliferation potential of rat MSCs from solid tissues was much better than those from bone marrow. In particular, synovium-derived cells had the greatest potential for both proliferation and chondrogenesis, indicating their usefulness for cartilage study in a rat model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An Update on Inflammatory Bowel Disease

            Inflammatory bowel disease (IBD) includes 2 chronic idiopathic inflammatory diseases: ulcerative colitis and Crohn disease. The incidence and prevalence of IBD is increasing worldwide. It can affect people of all ages, including children and geriatric populations, and can impact all aspects of life. In this article, diagnosis and treatment of IBD in adults, pediatric, pregnant, and elderly populations are explored from the perspective of a primary care physician.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adipose-derived stromal cells: Their identity and uses in clinical trials, an update.

              In adults, adipose tissue is abundant and can be easily sampled using liposuction. Largely involved in obesity and associated metabolic disorders, it is now described as a reservoir of immature stromal cells. These cells, called adipose-derived stromal cells (ADSCs) must be distinguished from the crude stromal vascular fraction (SVF) obtained after digestion of adipose tissue. ADSCs share many features with mesenchymal stem cells derived from bone marrow, including paracrine activity, but they also display some specific features, including a greater angiogenic potential. Their angiogenic properties as well as their paracrine activity suggest a putative tumor-promoting role for ADSCs although contradictory data have been published on this issue. Both SVF cells and ADSCs are currently being investigated in clinical trials in several fields (chronic inflammation, ischemic diseases, etc.). Apart from a phase III trial on the treatment of fistula, most of these are in phase I and use autologous cells. In the near future, the end results of these trials should provide a great deal of data on the safety of ADSC use.
                Bookmark

                Author and article information

                Journal
                Regenerative Therapy
                Regenerative Therapy
                Elsevier BV
                23523204
                June 2020
                June 2020
                : 14
                : 1-10
                Article
                10.1016/j.reth.2019.12.005
                eca6d90e-3586-4362-9c7d-0519bbf520b2
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article